Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import Bio.motifs
import pandas as pd
import numpy as np
import csv
import re
import string
from sklearn import preprocessing
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
from scipy.stats import pearsonr, spearmanr, cumfreq
# Order of Cell Lines
reorder = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
### Load and Process the ChIP-seq Data
#Load the matrix of Input data
enhancers_universe_Input= pd.DataFrame.from_csv("Input_filtered_peaks.tsv", sep="\t", header=0)
# Filter for these columns
Input_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
Input_index = enhancers_universe_Input.name.values
Input_tmp = pd.DataFrame(enhancers_universe_Input, columns=Input_columns )
Input_values = Input_tmp.set_index(Input_index)
# Filter for SSP and SUP
Input_ssp = Input_values[Input_values['name'].str.contains("SSP")]
Input_sunp = Input_values[Input_values['name'].str.contains("SUNP")]
Input_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
filter_Input_values = pd.concat([Input_ssp,Input_sunp])
only_Input_values = pd.DataFrame(filter_Input_values, columns=Input_columns)
# Rename columns and reorder
only_Input_values = only_Input_values[reorder]
x = only_Input_values.stack()
y = filter(lambda a: a != 0, x)
Input_factor = min(y)
Input_values_std_robust = only_Input_values + Input_factor
#Load the matrix of H3K4Me1
enhancers_universe_H3K4me1 = pd.DataFrame.from_csv("H3K4me1_filtered_peaks.tsv", sep="\t", header=0)
# Filter for these columns
H3K4me1_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
H3K4me1_index = enhancers_universe_H3K4me1.name.values
H3K4me1_tmp = pd.DataFrame(enhancers_universe_H3K4me1, columns=H3K4me1_columns )
H3K4me1_values = H3K4me1_tmp.set_index(H3K4me1_index)
# Filter for SSP and SUP
H3K4me1_ssp = H3K4me1_values[H3K4me1_values['name'].str.contains("SSP")]
H3K4me1_sunp = H3K4me1_values[H3K4me1_values['name'].str.contains("SUNP")]
H3K4me1_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
filter_H3K4me1_values = pd.concat([H3K4me1_ssp,H3K4me1_sunp])
only_H3K4me1_values = pd.DataFrame(filter_H3K4me1_values, columns=H3K4me1_columns)
# Rename columns and reorder
only_H3K4me1_values = only_H3K4me1_values[reorder]
x = only_H3K4me1_values.stack()
y = filter(lambda a: a != 0, x)
H3K4me1_factor = min(y)
H3K4me1_values_std_robust = only_H3K4me1_values + H3K4me1_factor
#Load the matrix of H3K27ac
enhancers_universe_H3K27ac = pd.DataFrame.from_csv("H3K27ac_filtered_peaks.tsv", sep="\t", header=0)
# Filter for these columns
H3K27ac_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
H3K27ac_index = enhancers_universe_H3K27ac.name.values
H3K27ac_tmp = pd.DataFrame(enhancers_universe_H3K27ac, columns=H3K27ac_columns )
H3K27ac_values = H3K27ac_tmp.set_index(H3K27ac_index)
# Filter for SSP and SUP
H3K27ac_ssp = H3K27ac_values[H3K27ac_values['name'].str.contains("SSP")]
H3K27ac_sunp = H3K27ac_values[H3K27ac_values['name'].str.contains("SUNP")]
H3K27ac_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
filter_H3K27ac_values = pd.concat([H3K27ac_ssp,H3K27ac_sunp])
only_H3K27ac_values = pd.DataFrame(filter_H3K27ac_values, columns=H3K27ac_columns)
# Rename columns and reorder
only_H3K27ac_values = only_H3K27ac_values[reorder]
x = only_H3K27ac_values.stack()
y = filter(lambda a: a != 0, x)
H3K27ac_factor = min(y)
H3K27ac_values_std_robust = only_H3K27ac_values + H3K27ac_factor
#Divide Histone Marks by Input
H3K4me1_values_std_input = H3K4me1_values_std_robust.divide(Input_values_std_robust)
H3K27ac_values_std_input = H3K27ac_values_std_robust.divide(Input_values_std_robust)
# Scale from 0-1
# H3K4me1
scaler = preprocessing.MinMaxScaler()
H3K4me1_values_std_robust_transform = H3K4me1_values_std_input.T
norm = scaler.fit_transform(H3K4me1_values_std_robust_transform.values)
H3K4me1_scaled = pd.DataFrame(data=norm.T, columns=list(H3K4me1_values_std_robust.columns.values), index = H3K4me1_values_std_robust.index )
# H3k27ac
scaler = preprocessing.MinMaxScaler()
H3K27ac_values_std_robust_transform = H3K27ac_values_std_input.T
norm = scaler.fit_transform(H3K27ac_values_std_robust_transform.values)
H3K27ac_scaled = pd.DataFrame(data=norm.T, columns=list(H3K27ac_values_std_robust.columns.values), index = H3K27ac_values_std_robust.index )
### Load and Process the GRO-seq Enhancer data
# load the matix of location and RPKM values
enhancers_universe = pd.DataFrame.from_csv("GRO_filtered_peaks.tsv", sep="\t", header=0, index_col=None)
# Filter for these columns
rpkm_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
rpkm_index = enhancers_universe.name.values
rpkm_tmp = pd.DataFrame(enhancers_universe, columns=rpkm_columns )
rpkm_values = rpkm_tmp.set_index(rpkm_index)
# Filter for SSP and SUP
rpkm_ssp = rpkm_values[rpkm_values['name'].str.contains("SSP")]
rpkm_sunp = rpkm_values[rpkm_values['name'].str.contains("SUNP")]
rpkm_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
filter_rpkm_values = pd.concat([rpkm_ssp,rpkm_sunp])
only_rpkm_values = pd.DataFrame(filter_rpkm_values, columns=rpkm_columns)
# Log2 scale RPKM
# get mininum value to non-zero value to scale by
x = only_rpkm_values.stack()
y = filter(lambda a: a != 0, x)
rpkm_factor = min(y) # min is 0.000119637562731
force_zero = np.log2(0.0005)
only_rpkm_values_factor = only_rpkm_values + rpkm_factor
rpkm_values_std = only_rpkm_values.apply(np.log2).replace(-np.inf,force_zero)
scaler = preprocessing.RobustScaler()
norm = scaler.fit_transform(rpkm_values_std.values)
rpkm_values_std_robust = pd.DataFrame(data=norm, columns=list(rpkm_values_std.columns.values), index = rpkm_values_std.index )
rpkm_values_std_robust = rpkm_values_std_robust[reorder]
# Scale from 0-1
scaler = preprocessing.MinMaxScaler()
rpkm_values_std_robust_transform = rpkm_values_std_robust.T
norm = scaler.fit_transform(rpkm_values_std_robust_transform.values)
rpkm_scaled = pd.DataFrame(data=norm.T, columns=list(rpkm_values_std_robust.columns.values), index = rpkm_values_std_robust.index )
### Parse MEME and TOMTOM Motif data
# Loop through meme output
meme_cell_dict = {
"MEME_op_ES_D0_gro-seq_enhancers_1kb_zoops": "tomtom_op_ES_D0_gro-seq_enhancers_1kb",
"MEME_op_ES_D2_gro-seq_enhancers_1kb_zoops": "tomtom_op_ES_D2_gro-seq_enhancers_1kb",
"MEME_op_ES_D5_gro-seq_enhancers_1kb_zoops": "tomtom_op_ES_D5_gro-seq_enhancers_1kb",
"MEME_op_ES_D7_gro-seq_enhancers_1kb_zoops": "tomtom_op_ES_D7_gro-seq_enhancers_1kb",
"MEME_op_ES_D10_gro-seq_enhancers_1kb_zoops": "tomtom_op_ES_D10_gro-seq_enhancers_1kb"
}
# Read Target ID to Motif into dictionary
motif_id_dict = {}
with open("/Volumes/project/GCRB/Lee_Lab/s163035/Matrix_analysis_PMIT_25842977/Motif/motif_Ids_name.txt", "rb") as data:
motif_ids = csv.DictReader(data, delimiter="\t")
for line in motif_ids:
motif_id_dict[line['ID']] = line['NAME']
meme_tomtom = pd.DataFrame()
for meme,tom in meme_cell_dict.iteritems():
# load meme output
meme_file = '%s/meme.txt' % (meme)
record = Bio.motifs.parse(open(meme_file), 'meme')
# Loop through all motifs and make dataframe
meme_positions = pd.DataFrame()
for motif in record:
name = motif.name.split(" ")[1]
ones = [1] * len(motif.instances)
names = []
for instance in motif.instances:
names.append(instance.sequence_name)
new = pd.DataFrame({name: ones},index = names)
temp = pd.concat([meme_positions, new], axis=1).fillna(0)
meme_positions = temp
# Read tomtom file
tomtom_file = "/Volumes/project/GCRB/Lee_Lab/s163035/Matrix_analysis_PMIT_25842977/Motif/%s/tomtom.txt" % (tom)
tomtom_dict = {}
with open(tomtom_file, "rb") as data:
tomtom = csv.DictReader(data, delimiter="\t")
for line in tomtom:
target = line['Target ID']
motif = line['#Query ID']
pval = float(line['p-value'])
tfs = motif_id_dict[target].upper()
motif_pvalue = { motif: [pval]}
# JASPAR :: means that any TF can either protein, split the protein
tf_list = tfs.split("::")
for tf in tf_list:
# Reduce split form splice to single value [ID]_#
single_isoform = tf.split("_")[0]
if single_isoform in tomtom_dict.keys():
if motif in tomtom_dict[single_isoform].keys():
tomtom_dict[single_isoform][motif].append(pval)
else:
tomtom_dict[single_isoform].update(motif_pvalue)
else:
tomtom_dict[single_isoform] = motif_pvalue
# Make dataframe
tomtom_motif = pd.DataFrame()
for key,motif in tomtom_dict.iteritems():
pvalue_dict = {}
# Loop through motifs to see if length greater than 1, if so do pvalue scaling
for m,p in motif.iteritems():
if len(p) > 1:
stouffer_statistic, stouffer_pval = scipy.stats.combine_pvalues(p,method = 'stouffer', weights = None)
pvalue_dict[m] = stouffer_pval
else:
pvalue_dict[m] = p[0]
pvalues = np.array(pvalue_dict.values())
new = pd.DataFrame({key: pvalues},index = pvalue_dict.keys())
temp = pd.concat([tomtom_motif, new], axis=1).fillna(0).sort_index(level=int)
tomtom_motif = temp
# Reorder
tomtom_motif_reorder = tomtom_motif.reindex( list(meme_positions.columns.values)).fillna(0)
# dot product
meme_tomtom_cell = meme_positions.dot(tomtom_motif_reorder)
# Scale and add
scaler = preprocessing.MinMaxScaler()
meme_tomtom_cell_transform = meme_tomtom_cell.T
norm = scaler.fit_transform(meme_tomtom_cell_transform.values) # norm across enhancers for each enhancer
meme_tomtom_cell_std = pd.DataFrame(data=norm.T, columns=list(meme_tomtom_cell.columns.values), index = meme_tomtom_cell.index )
# Add to previous data
temp = meme_tomtom.add(meme_tomtom_cell_std, fill_value=0).fillna(0).sort_index(level=int)
meme_tomtom = temp
# Transform meme tom_tom
motif_enhancers = meme_tomtom.T
# Rename column headers
motif_enhancers.rename(columns=lambda x: x.split('-')[0], inplace=True)
motif_enhancers.rename(columns=lambda x: x.replace(':', "_"), inplace=True)
# Standardize to range 0-1
scaler = preprocessing.MinMaxScaler()
motif_enhancers_transform = motif_enhancers.T
norm = scaler.fit_transform(motif_enhancers_transform.values) # norm across enhancers for each enhancer
motif_enhancers_scaled = pd.DataFrame(data=norm.T, columns=list(motif_enhancers.columns.values), index = motif_enhancers.index)
### Load and Parse FPKM data from RNA-seq
# Grab TF FPKM levels
fpkm = pd.read_table("rna.tsv")
gene_names_mapping = pd.read_csv("../gencode.v19.annotation_protein_coding_ids.txt",names=['gene_id', 'symbol'])
fpkm_symbol = fpkm.merge(gene_names_mapping)
fpkm_symbol = fpkm_symbol.set_index(['symbol'])
# Get only TF's in JASPAR
all_motifs = list(motif_enhancers.index)
fpkm_tfs = list(fpkm_symbol.index)
for i in range(0,len(fpkm_tfs)):
tf = fpkm_tfs[i]
tfs = tf.split(',')
if len(tfs) == 1:
fpkm_tfs[i] = tfs[0]
else:
for t in tfs:
if t in all_motifs:
fpkm_tfs[i] = t
tf_fpkm = fpkm_symbol.loc[fpkm_symbol.index.isin(all_motifs)]
# Get subset of only cell line FPKM calues
headers = list(tf_fpkm.columns.values)
subset = []
for value in headers:
if re.search('ES_D',value):
subset.append(value)
tf_cell_lines = tf_fpkm[subset]
# For Fusion 'EWSR1-FLI' take the lowest FPKM and add that to the tf_cell_lines
hetero_dimer_motifs = []
hetero_dimer = {}
for motif in all_motifs:
if re.search("-[a-zA-Z]",motif):
tfs = motif.split('-')
tf_fpkm_hd = fpkm.loc[fpkm.index.isin(tfs)]
tf_fpkm_hd_cell_lines = tf_fpkm_hd[subset]
hd_fpkm = tf_fpkm_hd_cell_lines.min(axis=0).to_frame()
hd_fpkm_transform = hd_fpkm.T
hd_fpkm_transform.name = 'gene_short_name'
hd_fpkm_transform.index = [motif]
temp = pd.concat([tf_fpkm, hd_fpkm_transform], axis=0)
tf_cell_lines = temp
# Rename headers for cell lines
headers = list(tf_cell_lines.columns.values)
new_headers = []
for h in headers:
new_headers.append(h.split('_')[1])
# Note 5 TFs not represented ['TCFE2A', 'RAR', 'ZFP423', 'RXR', 'TCFCP2L1']
tf_cell_lines.columns = new_headers
tf_cell_lines = tf_fpkm[subset]
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Log2 scale FPKM
x = tf_cell_lines.stack()
y = filter(lambda a: a != 0, x)
tf_factor = min(y) # min is 5.2535600000000006e-05
force_zero = np.log2(0.0000005)
tf_cell_lines_std = tf_cell_lines.apply(np.log2).replace(-np.inf,force_zero)
scaler = preprocessing.RobustScaler()
norm = scaler.fit_transform(tf_cell_lines_std.values)
tf_cell_lines_std_robust = pd.DataFrame(data=norm, columns=list(tf_cell_lines_std.columns.values), index = tf_cell_lines_std.index )
# Scale from 0-1
scaler = preprocessing.MinMaxScaler()
tf_cell_lines_std_robust_transform = tf_cell_lines_std_robust.T
norm = scaler.fit_transform(tf_cell_lines_std_robust_transform.values)
tf_scaled_tmp = pd.DataFrame(data=norm.T, columns=list(tf_cell_lines_std_robust.columns.values), index = tf_cell_lines_std_robust.index )
# Binarize (.4 cutoff for intial values)
threshold_1q = .4
scaler = preprocessing.Binarizer(threshold=threshold_1q)
norm = scaler.fit_transform(tf_cell_lines.values)
tf_scaled_binarize = pd.DataFrame(data=norm, columns=list(tf_cell_lines.columns.values), index = tf_cell_lines.index )
tf_scaled = tf_scaled_tmp.multiply(tf_scaled_binarize)
### Start Integration Clcuations
# 0. Filteration step
test = list(motif_enhancers_scaled.columns.values)
test_2 = list(rpkm_scaled.index.values)
set(test_2).intersection(test)
needed_rows = [row for row in rpkm_scaled.index if row in list(motif_enhancers_scaled.columns.values)]
rpkm_robust_filtered= rpkm_scaled.loc[needed_rows]
H3K27ac_robust_filtered= H3K27ac_scaled.loc[needed_rows]
H3K4me1_robust_filtered= H3K4me1_scaled.loc[needed_rows]
fd
# 1. add H3K27ac and H3K4me1 signal
H3K27ac_H3K4me1 = H3K27ac_scaled.add(H3K4me1_scaled)
# 2. Add H3K27ac by RPKM
rpkm_H3K27ac_H3K4me1 = H3K27ac_H3K4me1.add(rpkm_scaled)
# 3. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(rpkm_H3K27ac_H3K4me1)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]
# reindex
tf_scaled_ordered = tf_scaled.reindex(list(motif_cell_line_filtered_tfs.index))
tf_scaled_ordered = tf_scaled_ordered[reorder]
# 4. .multiply() to to Element-by-element multiplication Score Enhancers by TF
cell_tf_values = motif_cell_line_filtered_tfs.multiply(tf_scaled_ordered)
cell_tf_values.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
cell_tf_values_colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]
# 5. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(cell_tf_values.values)
cell_tf_values_std = pd.DataFrame(data=norm, columns=list(cell_tf_values.columns.values), index = cell_tf_values.index )
# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})
# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(cell_tf_values_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap.png')
# 6. Reorder based on clustering
reorder_clustering = cell_tf_values_std.columns.values[hmap.dendrogram_col.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std[reorder_clustering]
reindex_cluserting = cell_tf_values_std.index.values[hmap.dendrogram_row.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std_ordered.reindex(reindex_cluserting)
cell_tf_values_std_ordered.to_csv("final_full_cluster_z_score.csv", encoding='utf-8')
# 7. Rank Order
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from sklearn.manifold import TSNE
plt.style.use('classic')
tnse = TSNE(n_components=2, random_state=0)
tnse_fit = tnse.fit_transform(cell_tf_values_std)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
k_model = KMeans(n_clusters=4,random_state=1).fit(cell_tf_values_std)
labels = k_model.labels_
centroids = k_model.cluster_centers_
vis_x = tnse_fit[:, 0]
vis_y = tnse_fit[:, 1]
plt.scatter(vis_x, vis_y, c=labels, cmap=plt.cm.get_cmap("jet", 4),facecolor='white')
plt.colorbar(ticks=None)
plt.xlim(-300, 300)
plt.ylim(-300, 300)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.savefig('k_means_clustering.png')
plt.clf()
k_model = KMeans(n_clusters=4,random_state=1).fit(cell_tf_values_std)
labels = k_model.labels_
centroids = k_model.cluster_centers_
pca = PCA(n_components=2).fit(cell_tf_values_std)
pca_2d = pca.transform(cell_tf_values_std)
vis_x = pca_2d[:, 0]
vis_y = pca_2d[:, 1]
plt.scatter(vis_x, vis_y, c=labels, cmap=plt.cm.get_cmap("jet", 4))
plt.colorbar(ticks=range(4))
plt.savefig('k_means_clustering_pca.png')
plt.clf()
# Seperate into 4 cluster
cell_tf_values_std_cluster = cell_tf_values_std
cell_tf_values_std_cluster['cluster'] = list(labels)
cell_tf_values_std_cluster.to_csv('clustering_tfs.csv')
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
cell_tf_values_std_cluster_1 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 0]
cell_tf_values_std_cluster_2 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 1]
cell_tf_values_std_cluster_3 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 2]
cell_tf_values_std_cluster_4 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 3]
# col_colors
colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]
medianprops = dict(linestyle='-', linewidth=2, color='black')
box = cell_tf_values_std_cluster_1.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-1.5,1.5))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_1.png')
plt.clf()
box = cell_tf_values_std_cluster_2.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 1.5)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_2.png')
plt.clf()
box = cell_tf_values_std_cluster_3.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_3.png')
plt.clf()
box = cell_tf_values_std_cluster_4.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_4.png')
plt.clf()
# Wilcox rank sum test:
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D7'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D7'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D7'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D5'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D5'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D7'],cell_tf_values_std_cluster_4['ES_D10'])
# Look at Cluster 4 for expression of TF's
cluster4_tfs = tf_cell_lines.loc[cell_tf_values_std_cluster_4.index.values]
cluster4_tfs.to_csv("cluster_4_tfs.csv")
box = cluster4_tfs.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,65))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_4_tfs_fpkm.png')

Venkat Malladi
committed
# Cluster tfs 1 e-12
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D2'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D5'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D10'])
scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D5'])
scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D10'])
scipy.stats.ranksums(cluster4_tfs['ES_D5'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D5'],cluster4_tfs['ES_D10'])
scipy.stats.ranksums(cluster4_tfs['ES_D7'],cluster4_tfs['ES_D10'])
cluster4_motifs = motif_enhancers.loc[cell_tf_values_std_cluster_4.index.values]

Venkat Malladi
committed
cluster4_enhancers = only_rpkm_values.loc[cluster4_motifs.loc[:, (cluster4_motifs >1).any(axis=0)].columns.values]
cluster_4_expressed_enhancers = np.concatenate((rpkm_ssp[(rpkm_ssp['ES_D7'] >= 0.5) | (rpkm_ssp['ES_D10'] >= 0.5)].index.values,rpkm_sunp[(rpkm_sunp['ES_D7'] >= 1) | (rpkm_sunp['ES_D10'] >=1)].index.values))
needed_rows = [row for row in cluster4_enhancers.index if row in cluster_4_expressed_enhancers]
cluster4_enhancers_expressed = cluster4_enhancers.loc[needed_rows]
cluster4_enhancers_expressed.to_csv("cluster_4_enhancers.csv")

Venkat Malladi
committed
box = cluster4_enhancers_expressed.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)

Venkat Malladi
committed
plt.ylim((-5,75))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_4_enhancers_rpkm.png')
plt.clf()
# Cluster tfs 1 e-4

Venkat Malladi
committed
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D0'],cluster4_enhancers_expressed['ES_D2'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D0'],cluster4_enhancers_expressed['ES_D5'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D0'],cluster4_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D0'],cluster4_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D2'],cluster4_enhancers_expressed['ES_D5'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D2'],cluster4_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D2'],cluster4_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D5'],cluster4_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D5'],cluster4_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster4_enhancers_expressed['ES_D7'],cluster4_enhancers_expressed['ES_D10'])
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# Look at Cluster 3 for expression of TF's
cluster3_tfs = tf_cell_lines.loc[cell_tf_values_std_cluster_3.index.values]
cluster3_tfs.to_csv("cluster_3_tfs.csv")
box = cluster3_tfs.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,55))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_3_tfs_fpkm.png')
plt.clf()
# Cluster tfs 1 e-3 (NS)
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D2'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D7'],cluster3_tfs['ES_D10'])
cluster3_motifs = motif_enhancers.loc[cell_tf_values_std_cluster_3.index.values]

Venkat Malladi
committed
cluster3_enhancers = only_rpkm_values.loc[cluster3_motifs.loc[:, (cluster3_motifs >1).any(axis=0)].columns.values]
cluster_3_expressed_enhancers = np.concatenate((rpkm_ssp[(rpkm_ssp['ES_D0'] >= 0.5) | (rpkm_ssp['ES_D2'] >= 0.5) | (rpkm_ssp['ES_D5'] >= 0.5)].index.values,rpkm_sunp[(rpkm_sunp['ES_D0'] >= 1) | (rpkm_sunp['ES_D2'] >=1) | (rpkm_sunp['ES_D5'] >=1)].index.values))
needed_rows = [row for row in cluster3_enhancers.index if row in cluster_3_expressed_enhancers]
cluster3_enhancers_expressed = cluster3_enhancers.loc[needed_rows]
cluster3_enhancers_expressed.to_csv("cluster_3_enhancers.csv")

Venkat Malladi
committed
box = cluster3_enhancers_expressed.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)

Venkat Malladi
committed
plt.ylim((-5,55))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_3_enhancers_rpkm.png')
plt.clf()
# Cluster tfs 1 e-12

Venkat Malladi
committed
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D0'],cluster3_enhancers_expressed['ES_D2'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D0'],cluster3_enhancers_expressed['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D0'],cluster3_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D0'],cluster3_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D2'],cluster3_enhancers_expressed['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D2'],cluster3_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D2'],cluster3_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D5'],cluster3_enhancers_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D5'],cluster3_enhancers_expressed['ES_D10'])

Venkat Malladi
committed
scipy.stats.ranksums(cluster3_enhancers_expressed['ES_D7'],cluster3_enhancers_expressed['ES_D10'])
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
## Analysis of only RNA-seq
# 1. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(tf_scaled_ordered.values)
tf_scaled_std = pd.DataFrame(data=norm, columns=list(tf_scaled_ordered.columns.values), index = tf_scaled_ordered.index )
# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})
# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(tf_scaled_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_rna-seq.png')
labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with open("final_full_cluster_heatmap_rna-seq.csv", 'wb') as csv_file:
wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
for tf in labels:
wr.writerow([tf,])
# 2. Reorder based on clustering
reorder_clustering = tf_scaled_std.columns.values[hmap.dendrogram_col.reordered_ind]
tf_scaled_std_ordered = tf_scaled_std[reorder_clustering]
reindex_cluserting = tf_scaled_std.index.values[hmap.dendrogram_row.reordered_ind]
tf_scaled_std_ordered = tf_scaled_std_ordered.reindex(reindex_cluserting)
tf_scaled_std_ordered.to_csv("final_full_cluster_z_score-rnaseq.csv", encoding='utf-8')
## Analysis of only GRO-seq data
# 1. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(rpkm_robust_filtered)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]
# 2. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(motif_cell_line_filtered_tfs.values)
motif_cell_line_filtered_tfs_std = pd.DataFrame(data=norm, columns=list(motif_cell_line_filtered_tfs.columns.values), index = motif_cell_line_filtered_tfs.index )
# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})
# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(motif_cell_line_filtered_tfs_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_gro-seq.png')
labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with open("final_full_cluster_heatmap_gro-seq.csv", 'wb') as csv_file:
wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
for tf in labels:
wr.writerow([tf,])
# 3. Reorder based on clustering
reorder_clustering = motif_cell_line_filtered_tfs_std.columns.values[hmap.dendrogram_col.reordered_ind]
motif_cell_line_filtered_tfs_std_ordered = motif_cell_line_filtered_tfs_std[reorder_clustering]
reindex_cluserting = motif_cell_line_filtered_tfs_std.index.values[hmap.dendrogram_row.reordered_ind]
motif_cell_line_filtered_tfs_std_ordered = motif_cell_line_filtered_tfs_std_ordered.reindex(reindex_cluserting)
motif_cell_line_filtered_tfs_std_ordered.to_csv("final_full_cluster_z_score-groseq.csv", encoding='utf-8')
## Analysis of only GRO-seq data + RNA-seq
# 1. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(rpkm_robust_filtered)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]
# reindex
tf_scaled_ordered = tf_scaled.reindex(list(motif_cell_line_filtered_tfs.index))
tf_scaled_ordered = tf_scaled_ordered[reorder]
# 2. .multiply() to to Element-by-element multiplication Score Enhancers by TF
cell_tf_values = motif_cell_line_filtered_tfs.multiply(tf_scaled_ordered)
cell_tf_values.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10']
cell_tf_values_colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]
# 3. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(cell_tf_values.values)
cell_tf_values_std = pd.DataFrame(data=norm, columns=list(cell_tf_values.columns.values), index = cell_tf_values.index )
# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})
# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(cell_tf_values_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_gro_rna.png')
labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with open("final_full_cluster_heatmap_gro_rna.csv", 'wb') as csv_file:
wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
for tf in labels:
wr.writerow([tf,])
# 4. Reorder based on clustering
reorder_clustering = cell_tf_values_std.columns.values[hmap.dendrogram_col.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std[reorder_clustering]
reindex_cluserting = cell_tf_values_std.index.values[hmap.dendrogram_row.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std_ordered.reindex(reindex_cluserting)
cell_tf_values_std_ordered.to_csv("final_full_cluster_z_score_gro_rna.csv", encoding='utf-8')