Skip to content
Snippets Groups Projects
Commit 9ad9fcd7 authored by Venkat Malladi's avatar Venkat Malladi
Browse files

Added analysis of looking at Cluster 3.

parent 0a630fb7
Branches
No related merge requests found
GRO_seq_TFSEE/box_plot_cluster_3_enhancers_rpkm.png

12.5 KiB

GRO_seq_TFSEE/box_plot_cluster_3_tfs_fpkm.png

12.9 KiB

......@@ -518,10 +518,146 @@ plt.clf()
# Wilcox rank sum test:
# Cluster 1 1 e-5
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D7'],cell_tf_values_std_cluster_1['ES_D10'])
# Cluster 2 1 e-5
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D7'],cell_tf_values_std_cluster_2['ES_D10'])
# Cluster 3 1 e-5
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D10'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D7'],cell_tf_values_std_cluster_3['ES_D10'])
# Cluster 4 1 e-5
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D0'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D2'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D5'],cell_tf_values_std_cluster_4['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D5'],cell_tf_values_std_cluster_4['ES_D10'])
scipy.stats.ranksums(cell_tf_values_std_cluster_4['ES_D7'],cell_tf_values_std_cluster_4['ES_D10'])
# Look at Cluster 3 for expression of TF's
cluster3_tfs = tf_cell_lines.loc[cell_tf_values_std_cluster_3.index.values]
box = cluster3_tfs.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,65))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_3_tfs_fpkm.png')
plt.clf()
# Cluster tfs 1 e-4
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D2'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D10'])
scipy.stats.ranksums(cluster3_tfs['ES_D7'],cluster3_tfs['ES_D10'])
cluster3_motifs = motif_enhancers.loc[cell_tf_values_std_cluster_3.index.values]
cluster3_enhancers = only_rpkm_values.loc[cluster3_motifs.loc[:, (cluster3_motifs != 0).all(axis=0)].columns.values]
box = cluster3_enhancers.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,105))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_3_enhancers_rpkm.png')
plt.clf()
# Cluster tfs 1 e-4
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D2'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D10'])
scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D10'])
scipy.stats.ranksums(cluster3_enhancers['ES_D5'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D5'],cluster3_enhancers['ES_D10'])
scipy.stats.ranksums(cluster3_enhancers['ES_D7'],cluster3_enhancers['ES_D10'])
## Analysis of only RNA-seq
# 1. Z-score Standardize for each cell line to see important TF's
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment