Skip to content
Snippets Groups Projects
matrix_analysis.py 33.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
import Bio.motifs
import pandas as pd
import numpy as np
import csv
import re
import string
from sklearn import preprocessing
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
from scipy.stats import pearsonr, spearmanr, cumfreq


# Order of Cell Lines
reorder = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']


### Load and Process the ChIP-seq Data

#Load the matrix of Input data
enhancers_universe_Input= pd.DataFrame.from_csv("Input_filtered_peaks.tsv", sep="\t", header=0)

# Filter for these columns
Input_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
Input_index = enhancers_universe_Input.name.values
Input_tmp = pd.DataFrame(enhancers_universe_Input, columns=Input_columns )
Input_values = Input_tmp.set_index(Input_index)

# Filter for only input values
Input_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
only_Input_values = pd.DataFrame(Input_values, columns=Input_columns)


# Rename columns and reorder
only_Input_values = only_Input_values[reorder]
x = only_Input_values.stack()
y = filter(lambda a: a != 0, x)
Input_factor = min(y)
Input_values_std_robust = only_Input_values + Input_factor


#Load the matrix of H3K4Me1
enhancers_universe_H3K4me1 = pd.DataFrame.from_csv("H3K4me1_filtered_peaks.tsv", sep="\t", header=0)

# Filter for these columns
H3K4me1_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
H3K4me1_index = enhancers_universe_H3K4me1.name.values
H3K4me1_tmp = pd.DataFrame(enhancers_universe_H3K4me1, columns=H3K4me1_columns )
H3K4me1_values = H3K4me1_tmp.set_index(H3K4me1_index)

# Filter for only input values
H3K4me1_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
only_H3K4me1_values = pd.DataFrame(H3K4me1_values, columns=H3K4me1_columns)

# Rename columns and reorder
only_H3K4me1_values = only_H3K4me1_values[reorder]
x = only_H3K4me1_values.stack()
y = filter(lambda a: a != 0, x)
H3K4me1_factor = min(y)
H3K4me1_values_std_robust = only_H3K4me1_values + H3K4me1_factor


#Load the matrix of H3K27ac
enhancers_universe_H3K27ac = pd.DataFrame.from_csv("H3K27ac_filtered_peaks.tsv", sep="\t", header=0)

# Filter for these columns
H3K27ac_columns = ['name','ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
H3K27ac_index = enhancers_universe_H3K27ac.name.values
H3K27ac_tmp = pd.DataFrame(enhancers_universe_H3K27ac, columns=H3K27ac_columns )
H3K27ac_values = H3K27ac_tmp.set_index(H3K27ac_index)

# Filter for only input values
H3K27ac_columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
only_H3K27ac_values = pd.DataFrame(H3K27ac_values, columns=H3K27ac_columns)

# Rename columns and reorder
only_H3K27ac_values = only_H3K27ac_values[reorder]
x = only_H3K27ac_values.stack()
y = filter(lambda a: a != 0, x)
H3K27ac_factor = min(y)
H3K27ac_values_std_robust = only_H3K27ac_values + H3K27ac_factor


#Divide Histone Marks by Input
H3K4me1_values_std_input = H3K4me1_values_std_robust.divide(Input_values_std_robust)
H3K27ac_values_std_input = H3K27ac_values_std_robust.divide(Input_values_std_robust)

# Scale from 0-1
# H3K4me1
scaler = preprocessing.MinMaxScaler()
H3K4me1_values_std_robust_transform = H3K4me1_values_std_input.T
norm = scaler.fit_transform(H3K4me1_values_std_robust_transform.values)
H3K4me1_scaled = pd.DataFrame(data=norm.T, columns=list(H3K4me1_values_std_robust.columns.values), index = H3K4me1_values_std_robust.index )

# H3k27ac
scaler = preprocessing.MinMaxScaler()
H3K27ac_values_std_robust_transform = H3K27ac_values_std_input.T
norm = scaler.fit_transform(H3K27ac_values_std_robust_transform.values)
H3K27ac_scaled = pd.DataFrame(data=norm.T, columns=list(H3K27ac_values_std_robust.columns.values), index = H3K27ac_values_std_robust.index )


### Parse MEME and TOMTOM Motif data

# Loop through meme output
meme_cell_dict = {
"MEME_op_ES_D0_Histone_enhancers_1kb_zoops": "tomtom_op_ES_D0_Histone_enhancers_1kb",
"MEME_op_ES_D2_Histone_enhancers_1kb_zoops": "tomtom_op_ES_D2_Histone_enhancers_1kb",
"MEME_op_ES_D5_Histone_enhancers_1kb_zoops": "tomtom_op_ES_D5_Histone_enhancers_1kb",
"MEME_op_ES_D7_Histone_enhancers_1kb_zoops":  "tomtom_op_ES_D7_Histone_enhancers_1kb",
"MEME_op_ES_D10_Histone_enhancers_1kb_zoops":  "tomtom_op_ES_D10_Histone_enhancers_1kb"
}

# Read Target ID to Motif into dictionary
motif_id_dict = {}
with open("/Volumes/project/GCRB/Lee_Lab/s163035/Matrix_analysis_PMIT_25842977/Motif/motif_Ids_name.txt", "rb") as data:
    motif_ids = csv.DictReader(data, delimiter="\t")
    for line in motif_ids:
        motif_id_dict[line['ID']] = line['NAME']

meme_tomtom = pd.DataFrame()
for meme,tom in meme_cell_dict.iteritems():
    # load meme output
    meme_file = '%s/meme.txt' % (meme)
    record = Bio.motifs.parse(open(meme_file), 'meme')
    # Loop through all motifs and make dataframe
    meme_positions = pd.DataFrame()
    for motif in record:
        name = motif.name.split(" ")[1]
        ones = [1] * len(motif.instances)
        names = []
        for instance in motif.instances:
            names.append(instance.sequence_name)
        new = pd.DataFrame({name: ones},index = names)
        temp = pd.concat([meme_positions, new], axis=1).fillna(0)
        meme_positions = temp
    # Read tomtom file
    tomtom_file = "/Volumes/project/GCRB/Lee_Lab/s163035/Matrix_analysis_PMIT_25842977/Motif/%s/tomtom.txt" % (tom)
    tomtom_dict = {}
    with open(tomtom_file, "rb") as data:
        tomtom = csv.DictReader(data, delimiter="\t")
        for line in tomtom:
            target = line['Target ID']
            motif = line['#Query ID']
            pval = float(line['p-value'])
            tfs = motif_id_dict[target].upper()
            motif_pvalue = { motif:  [pval]}
            # JASPAR :: means that any TF can either protein, split the protein
            tf_list = tfs.split("::")
            for tf in tf_list:
                # Reduce split form splice to single value [ID]_#
                single_isoform = tf.split("_")[0]
                if single_isoform in tomtom_dict.keys():
                    if motif in tomtom_dict[single_isoform].keys():
                        tomtom_dict[single_isoform][motif].append(pval)
                    else:
                        tomtom_dict[single_isoform].update(motif_pvalue)
                else:
                    tomtom_dict[single_isoform] = motif_pvalue
    # Make dataframe
    tomtom_motif = pd.DataFrame()
    for key,motif in tomtom_dict.iteritems():
        pvalue_dict = {}
        # Loop through motifs to see if length greater than 1, if so do pvalue scaling
        for m,p in motif.iteritems():
            if len(p) > 1:
                stouffer_statistic, stouffer_pval = scipy.stats.combine_pvalues(p,method = 'stouffer', weights = None)
                pvalue_dict[m] = stouffer_pval
            else:
                pvalue_dict[m] = p[0]
        pvalues = np.array(pvalue_dict.values())
        new = pd.DataFrame({key: pvalues},index = pvalue_dict.keys())
        temp = pd.concat([tomtom_motif, new], axis=1).fillna(0).sort_index(level=int)
        tomtom_motif = temp
    # Reorder
    tomtom_motif_reorder = tomtom_motif.reindex( list(meme_positions.columns.values)).fillna(0)
    # dot product
    meme_tomtom_cell = meme_positions.dot(tomtom_motif_reorder)
    # Scale and add
    scaler = preprocessing.MinMaxScaler()
    meme_tomtom_cell_transform = meme_tomtom_cell.T
    norm = scaler.fit_transform(meme_tomtom_cell_transform.values) # norm across enhancers for each enhancer
    meme_tomtom_cell_std = pd.DataFrame(data=norm.T, columns=list(meme_tomtom_cell.columns.values), index = meme_tomtom_cell.index )
    # Add to previous data
    temp = meme_tomtom.add(meme_tomtom_cell_std, fill_value=0).fillna(0).sort_index(level=int)
    meme_tomtom = temp

# Transform meme tom_tom
motif_enhancers = meme_tomtom.T

# Rename column headers
motif_enhancers.rename(columns=lambda x: x.split('-')[0], inplace=True)
motif_enhancers.rename(columns=lambda x: x.replace(':', "_"), inplace=True)

# Standardize to range 0-1
scaler = preprocessing.MinMaxScaler()
motif_enhancers_transform = motif_enhancers.T
norm = scaler.fit_transform(motif_enhancers_transform.values) # norm across enhancers for each enhancer
motif_enhancers_scaled = pd.DataFrame(data=norm.T, columns=list(motif_enhancers.columns.values), index = motif_enhancers.index)



### Load and Parse FPKM data from RNA-seq

# Grab TF FPKM levels
fpkm = pd.read_table("rna.tsv")
gene_names_mapping = pd.read_csv("../gencode.v19.annotation_protein_coding_ids.txt",names=['gene_id', 'symbol'])
fpkm_symbol = fpkm.merge(gene_names_mapping)
fpkm_symbol = fpkm_symbol.set_index(['symbol'])

# Get only TF's in JASPAR
all_motifs = list(motif_enhancers.index)
fpkm_tfs = list(fpkm_symbol.index)
for i in range(0,len(fpkm_tfs)):
    tf = fpkm_tfs[i]
    tfs = tf.split(',')
    if len(tfs) == 1:
        fpkm_tfs[i] = tfs[0]
    else:
        for t in tfs:
            if t in all_motifs:
                fpkm_tfs[i] = t

tf_fpkm = fpkm_symbol.loc[fpkm_symbol.index.isin(all_motifs)]

# Get subset of only cell line FPKM calues
headers = list(tf_fpkm.columns.values)
subset = []
for value in headers:
    if re.search('ES_D',value):
        subset.append(value)

tf_cell_lines = tf_fpkm[subset]

# For Fusion 'EWSR1-FLI' take the lowest FPKM and add that to the tf_cell_lines
hetero_dimer_motifs = []
hetero_dimer = {}
for motif in all_motifs:
    if re.search("-[a-zA-Z]",motif):
        tfs = motif.split('-')
        tf_fpkm_hd = fpkm.loc[fpkm.index.isin(tfs)]
        tf_fpkm_hd_cell_lines = tf_fpkm_hd[subset]
        hd_fpkm = tf_fpkm_hd_cell_lines.min(axis=0).to_frame()
        hd_fpkm_transform = hd_fpkm.T
        hd_fpkm_transform.name = 'gene_short_name'
        hd_fpkm_transform.index = [motif]
        temp = pd.concat([tf_fpkm, hd_fpkm_transform], axis=0)
        tf_cell_lines = temp


# Rename headers for cell lines
headers = list(tf_cell_lines.columns.values)
new_headers = []
for h in headers:
     new_headers.append(h.split('_')[1])

# Note 5 TFs not represented ['TCFE2A', 'RAR', 'ZFP423', 'RXR', 'TCFCP2L1']

tf_cell_lines.columns = new_headers
tf_cell_lines = tf_fpkm[subset]

# Log2 scale FPKM
x = tf_cell_lines.stack()
y = filter(lambda a: a != 0, x)
tf_factor = min(y) # min is 5.2535600000000006e-05
force_zero = np.log2(0.0000005)
tf_cell_lines_std = tf_cell_lines.apply(np.log2).replace(-np.inf,force_zero)
scaler = preprocessing.RobustScaler()
norm = scaler.fit_transform(tf_cell_lines_std.values)
tf_cell_lines_std_robust = pd.DataFrame(data=norm, columns=list(tf_cell_lines_std.columns.values), index = tf_cell_lines_std.index )

# Scale from 0-1
scaler = preprocessing.MinMaxScaler()
tf_cell_lines_std_robust_transform = tf_cell_lines_std_robust.T
norm = scaler.fit_transform(tf_cell_lines_std_robust_transform.values)
tf_scaled_tmp = pd.DataFrame(data=norm.T, columns=list(tf_cell_lines_std_robust.columns.values), index = tf_cell_lines_std_robust.index )

# Binarize (.4 cutoff for intial values)
threshold_1q = .4
scaler = preprocessing.Binarizer(threshold=threshold_1q)
norm = scaler.fit_transform(tf_cell_lines.values)
tf_scaled_binarize = pd.DataFrame(data=norm, columns=list(tf_cell_lines.columns.values), index = tf_cell_lines.index )
tf_scaled = tf_scaled_tmp.multiply(tf_scaled_binarize)


### Start Integration Clcuations

# 0. Filteration step
test = list(motif_enhancers_scaled.columns.values)
test_2 = list(H3K27ac_values_std_input.index.values)
#needed_rows = [row for row in H3K27ac_scaled.index if row in list(motif_enhancers_scaled.columns.values)]
needed_rows = list(set(test_2) & set(test))
H3K27ac_robust_filtered= H3K27ac_values_std_input.loc[needed_rows]
H3K4me1_robust_filtered= H3K4me1_values_std_input.loc[needed_rows]
H3K27ac_values_std_robust_filtered = H3K27ac_values_std_robust.loc[needed_rows]
H3K4me1_values_std_robust_filtered = H3K4me1_values_std_robust.loc[needed_rows]

# 0.5
# Scale from 0-1
# H3K4me1
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
H3K4me1_values_std_robust_transform = H3K4me1_robust_filtered.T
norm = scaler.fit_transform(H3K4me1_values_std_robust_transform.values)
H3K4me1_scaled = pd.DataFrame(data=norm.T, columns=list(H3K4me1_values_std_robust_filtered.columns.values), index = H3K4me1_values_std_robust_filtered.index )

# H3k27ac
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1))
H3K27ac_values_std_robust_transform = H3K4me1_robust_filtered.T
norm = scaler.fit_transform(H3K27ac_values_std_robust_transform.values)
H3K27ac_scaled = pd.DataFrame(data=norm.T, columns=list(H3K27ac_values_std_robust_filtered.columns.values), index = H3K27ac_values_std_robust_filtered.index )


# 1. add H3K27ac and H3K4me1 signal
H3K27ac_H3K4me1 = H3K27ac_scaled.add(H3K4me1_scaled)

# 2. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(H3K27ac_H3K4me1)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]

# reindex
tf_scaled_ordered = tf_scaled.reindex(list(motif_cell_line_filtered_tfs.index))
tf_scaled_ordered = tf_scaled_ordered[reorder]

# 4. .multiply() to to Element-by-element multiplication Score Enhancers by TF
cell_tf_values = motif_cell_line_filtered_tfs.multiply(tf_scaled_ordered)
cell_tf_values.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
cell_tf_values_colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]

# 5. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(cell_tf_values.values)
cell_tf_values_std = pd.DataFrame(data=norm, columns=list(cell_tf_values.columns.values), index = cell_tf_values.index )


# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})

# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(cell_tf_values_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap.png')
plt.clf()


# 6. Reorder based on clustering
reorder_clustering = cell_tf_values_std.columns.values[hmap.dendrogram_col.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std[reorder_clustering]
reindex_cluserting = cell_tf_values_std.index.values[hmap.dendrogram_row.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std_ordered.reindex(reindex_cluserting)
cell_tf_values_std_ordered.to_csv("final_full_cluster_z_score.csv", encoding='utf-8')

# 7. Rank Order
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from sklearn.manifold import TSNE
plt.style.use('classic')


#TNSE
tnse = TSNE(n_components=2,verbose=2,learning_rate=100,perplexity=50)
tnse_fit = tnse.fit_transform(cell_tf_values)

k_model = KMeans(n_clusters=3).fit(cell_tf_values)
labels = k_model.labels_
centroids = k_model.cluster_centers_


vis_x = tnse_fit[:, 0]
vis_y = tnse_fit[:, 1]

plt.scatter(vis_x, vis_y, c=labels, cmap=plt.cm.get_cmap("jet", 3),facecolor='white',marker='o',s=100,linewidth=2)
#plt.colorbar(ticks=None)
plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.savefig('k_means_clustering.png')
plt.clf()



k_model = KMeans(n_clusters=3,random_state=1).fit(cell_tf_values_std)
labels = k_model.labels_
centroids = k_model.cluster_centers_

pca = PCA(n_components=2).fit(cell_tf_values_std)
pca_2d = pca.transform(cell_tf_values_std)

vis_x = pca_2d[:, 0]
vis_y = pca_2d[:, 1]


plt.scatter(vis_x, vis_y, c=labels, cmap=plt.cm.get_cmap("jet", 3),facecolor='white',marker='o',s=50,linewidth='2')
plt.colorbar(ticks=range(3))
plt.savefig('k_means_clustering_pca.png')
plt.clf()


# Seperate into 3 cluster
cell_tf_values_std_cluster = cell_tf_values_std
cell_tf_values_std_cluster['cluster'] = list(labels)

cell_tf_values_std_cluster.to_csv('clustering_tfs.csv')

cell_tf_values_std_cluster_1 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 0]
cell_tf_values_std_cluster_2 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 1]
cell_tf_values_std_cluster_3 = cell_tf_values_std_cluster.loc[cell_tf_values_std_cluster['cluster'] == 2]


# col_colors
colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]
medianprops = dict(linestyle='-', linewidth=4, color='black')

box = cell_tf_values_std_cluster_1.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-1.5,5.5))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_1.png')
plt.clf()


box = cell_tf_values_std_cluster_2.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-1,1))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_2.png')
plt.clf()

box = cell_tf_values_std_cluster_3.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-1.5,5.5))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_3.png')
plt.clf()



# Wilcox rank sum test:
# Cluster 1 1 e-2
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D0'],cell_tf_values_std_cluster_1['ES_D10'])


scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D2'],cell_tf_values_std_cluster_1['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D5'],cell_tf_values_std_cluster_1['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_1['ES_D7'],cell_tf_values_std_cluster_1['ES_D10'])


# Cluster 2 1 e-2
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D0'],cell_tf_values_std_cluster_2['ES_D10'])


scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D2'],cell_tf_values_std_cluster_2['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D5'],cell_tf_values_std_cluster_2['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_2['ES_D7'],cell_tf_values_std_cluster_2['ES_D10'])

# Cluster 3 1 e-2
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D2'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D0'],cell_tf_values_std_cluster_3['ES_D10'])


scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D5'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D2'],cell_tf_values_std_cluster_3['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D7'])
scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D5'],cell_tf_values_std_cluster_3['ES_D10'])

scipy.stats.ranksums(cell_tf_values_std_cluster_3['ES_D7'],cell_tf_values_std_cluster_3['ES_D10'])


# Look at Cluster 4 for expression of TF's
cluster4_tfs = tf_cell_lines.loc[cell_tf_values_std_cluster_4.index.values]
cluster4_tfs.to_csv("cluster_4_tfs.csv")

box = cluster4_tfs.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,65))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_4_tfs_fpkm.png')
plt.clf()

# Cluster tfs 1 e-3
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D2'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D5'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D0'],cluster4_tfs['ES_D10'])


scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D5'])
scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D2'],cluster4_tfs['ES_D10'])

scipy.stats.ranksums(cluster4_tfs['ES_D5'],cluster4_tfs['ES_D7'])
scipy.stats.ranksums(cluster4_tfs['ES_D5'],cluster4_tfs['ES_D10'])

scipy.stats.ranksums(cluster4_tfs['ES_D7'],cluster4_tfs['ES_D10'])




cluster4_motifs = motif_enhancers.loc[cell_tf_values_std_cluster_4.index.values]
cluster4_enhancers = only_rpkm_values.loc[cluster4_motifs.loc[:, (cluster4_motifs != 0).all(axis=0)].columns.values]
cluster4_enhancers.to_csv("cluster_4_enhancers.csv")

box = cluster4_enhancers.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,105))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_4_enhancers_rpkm.png')
plt.clf()

# Cluster tfs 1 e-4
scipy.stats.ranksums(cluster4_enhancers['ES_D0'],cluster4_enhancers['ES_D2'])
scipy.stats.ranksums(cluster4_enhancers['ES_D0'],cluster4_enhancers['ES_D5'])
scipy.stats.ranksums(cluster4_enhancers['ES_D0'],cluster4_enhancers['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers['ES_D0'],cluster4_enhancers['ES_D10'])


scipy.stats.ranksums(cluster4_enhancers['ES_D2'],cluster4_enhancers['ES_D5'])
scipy.stats.ranksums(cluster4_enhancers['ES_D2'],cluster4_enhancers['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers['ES_D2'],cluster4_enhancers['ES_D10'])

scipy.stats.ranksums(cluster4_enhancers['ES_D5'],cluster4_enhancers['ES_D7'])
scipy.stats.ranksums(cluster4_enhancers['ES_D5'],cluster4_enhancers['ES_D10'])

scipy.stats.ranksums(cluster4_enhancers['ES_D7'],cluster4_enhancers['ES_D10'])


# Look at Cluster 3 for expression of TF's
cluster3_tfs = tf_cell_lines.loc[cell_tf_values_std_cluster_3.index.values]
cluster3_tfs.to_csv("cluster_3_tfs.csv")

box = cluster3_tfs.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,55))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_3_tfs_fpkm.png')
plt.clf()

# Cluster tfs 1 e-3 (NS)
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D2'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D0'],cluster3_tfs['ES_D10'])


scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D5'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D2'],cluster3_tfs['ES_D10'])

scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D7'])
scipy.stats.ranksums(cluster3_tfs['ES_D5'],cluster3_tfs['ES_D10'])

scipy.stats.ranksums(cluster3_tfs['ES_D7'],cluster3_tfs['ES_D10'])




cluster3_motifs = motif_enhancers.loc[cell_tf_values_std_cluster_3.index.values]
cluster3_enhancers = only_rpkm_values.loc[cluster3_motifs.loc[:, (cluster3_motifs != 0).all(axis=0)].columns.values]
cluster3_enhancers.to_csv("cluster_3_enhancers.csv")

box = cluster3_enhancers.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 3)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 3)

for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)

plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,65))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10'])
plt.savefig('box_plot_cluster_3_enhancers_rpkm.png')
plt.clf()

# Cluster tfs 1 e-12
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D2'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D0'],cluster3_enhancers['ES_D10'])


scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D5'])
scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D2'],cluster3_enhancers['ES_D10'])

scipy.stats.ranksums(cluster3_enhancers['ES_D5'],cluster3_enhancers['ES_D7'])
scipy.stats.ranksums(cluster3_enhancers['ES_D5'],cluster3_enhancers['ES_D10'])

scipy.stats.ranksums(cluster3_enhancers['ES_D7'],cluster3_enhancers['ES_D10'])


## Analysis of only RNA-seq
# 1. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(tf_scaled_ordered.values)
tf_scaled_std = pd.DataFrame(data=norm, columns=list(tf_scaled_ordered.columns.values), index = tf_scaled_ordered.index )

# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})

# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(tf_scaled_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_rna-seq.png')

labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with  open("final_full_cluster_heatmap_rna-seq.csv", 'wb') as csv_file:
    wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
    for tf in labels:
        wr.writerow([tf,])

# 2. Reorder based on clustering
reorder_clustering = tf_scaled_std.columns.values[hmap.dendrogram_col.reordered_ind]
tf_scaled_std_ordered = tf_scaled_std[reorder_clustering]
reindex_cluserting = tf_scaled_std.index.values[hmap.dendrogram_row.reordered_ind]
tf_scaled_std_ordered = tf_scaled_std_ordered.reindex(reindex_cluserting)
tf_scaled_std_ordered.to_csv("final_full_cluster_z_score-rnaseq.csv", encoding='utf-8')


## Analysis of only GRO-seq data
# 1. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(rpkm_robust_filtered)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns =  ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]

# 2. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(motif_cell_line_filtered_tfs.values)
motif_cell_line_filtered_tfs_std = pd.DataFrame(data=norm, columns=list(motif_cell_line_filtered_tfs.columns.values), index = motif_cell_line_filtered_tfs.index )

# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})

# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(motif_cell_line_filtered_tfs_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_gro-seq.png')

labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with  open("final_full_cluster_heatmap_gro-seq.csv", 'wb') as csv_file:
    wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
    for tf in labels:
        wr.writerow([tf,])

# 3. Reorder based on clustering
reorder_clustering = motif_cell_line_filtered_tfs_std.columns.values[hmap.dendrogram_col.reordered_ind]
motif_cell_line_filtered_tfs_std_ordered = motif_cell_line_filtered_tfs_std[reorder_clustering]
reindex_cluserting = motif_cell_line_filtered_tfs_std.index.values[hmap.dendrogram_row.reordered_ind]
motif_cell_line_filtered_tfs_std_ordered = motif_cell_line_filtered_tfs_std_ordered.reindex(reindex_cluserting)
motif_cell_line_filtered_tfs_std_ordered.to_csv("final_full_cluster_z_score-groseq.csv", encoding='utf-8')

## Analysis of only GRO-seq data + RNA-seq

# 1. Make Score Matrix
## Enhancers RPKM x Motif Enhancers
motif_cell_line = motif_enhancers_scaled.dot(rpkm_robust_filtered)
needed_rows = [row for row in motif_cell_line.index if row in list(tf_scaled.index)]
motif_cell_line_filtered_tfs = motif_cell_line.loc[needed_rows]
motif_cell_line_filtered_tfs.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
motif_cell_line_filtered_tfs = motif_cell_line_filtered_tfs[reorder]

# reindex
tf_scaled_ordered = tf_scaled.reindex(list(motif_cell_line_filtered_tfs.index))
tf_scaled_ordered = tf_scaled_ordered[reorder]

# 2. .multiply() to to Element-by-element multiplication Score Enhancers by TF
cell_tf_values = motif_cell_line_filtered_tfs.multiply(tf_scaled_ordered)
cell_tf_values.columns = ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7',  'ES_D10']
cell_tf_values_colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]

# 3. Z-score Standardize for each cell line to see important TF's
scaler = preprocessing.StandardScaler()
norm = scaler.fit_transform(cell_tf_values.values)
cell_tf_values_std = pd.DataFrame(data=norm, columns=list(cell_tf_values.columns.values), index = cell_tf_values.index )


# Seaborn settings
sns.axes_style({'image.cmap': u'Blacks','lines.linewidth': 100.0})

# Cluster Heatmap
sns.set_context("paper")
hmap = sns.clustermap(cell_tf_values_std,xticklabels=True, yticklabels=True, cmap="RdBu_r", method = "complete", metric = "euclidean", figsize=(20, 20), col_colors=sns.color_palette(cell_tf_values_colors))
plt.setp(hmap.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.savefig('final_full_cluster_heatmap_gro_rna.png')

labels = [item.get_text() for item in hmap.ax_heatmap.yaxis.get_majorticklabels()]
labels.reverse()
with  open("final_full_cluster_heatmap_gro_rna.csv", 'wb') as csv_file:
    wr = csv.writer(csv_file,dialect='excel',quoting=csv.QUOTE_ALL)
    for tf in labels:
        wr.writerow([tf,])


# 4. Reorder based on clustering
reorder_clustering = cell_tf_values_std.columns.values[hmap.dendrogram_col.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std[reorder_clustering]
reindex_cluserting = cell_tf_values_std.index.values[hmap.dendrogram_row.reordered_ind]
cell_tf_values_std_ordered = cell_tf_values_std_ordered.reindex(reindex_cluserting)
cell_tf_values_std_ordered.to_csv("final_full_cluster_z_score_gro_rna.csv", encoding='utf-8')