Skip to content
Snippets Groups Projects
MPI Programming and Benchmarking 15.1 KiB
Newer Older
Chinthak Murali's avatar
Chinthak Murali committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
Mentor: Peng

Training Topics
Pre-require:

1. understand the concept of OpenMP and MPI, multiple-thread vs multiple-process 

OpenMP: 

Use OpenMP when working on a shared memory system and the parallelism can be easily expressed using threads. 
It is often simpler to implement and can be very efficient for multi-core processors.

MPI: 

Use MPI for large-scale distributed computing across multiple nodes. 
It is essential for applications that require high scalability and involve complex communication patterns among processes.



Multiple Threads

Threads are the smallest unit of execution within a process. 
Multiple threads within a single process share the same memory space and can communicate more efficiently than separate processes. 
Each thread has its own stack but shares code, data, and file descriptors with other threads in the same process.

Multiple Processes

Processes are independent execution units that have their own memory space. 
Multiple processes can run concurrently on different CPUs or cores and communicate via inter-process communication (IPC) mechanisms like pipes, sockets, shared memory, or message passing.


2. create scripts to run OpenMP helloworld and an example for parallel loop 




#include <omp.h>
#include <stdio.h>

int main() {
    // Parallel region
    #pragma omp parallel
    {
        int thread_id = omp_get_thread_num();
        printf("Hello World from thread %d\n", thread_id);
    }
    return 0;
}



gcc -fopenmp hello_openmp.c -o hello_openmp
./hello_openmp


This script demonstrates how to use OpenMP to parallelize a loop that calculates the square of each element in an array.

#include <omp.h>
#include <stdio.h>

#define N 100

int main() {
    int i;
    int array[N];

    // Initialize the array
    for (i = 0; i < N; i++) {
        array[i] = i;
    }

    // Parallelize this loop with OpenMP
    #pragma omp parallel for
    for (i = 0; i < N; i++) {
        array[i] = array[i] * array[i];
    }

    // Print the results
    for (i = 0; i < N; i++) {
        printf("array[%d] = %d\n", i, array[i]);
    }

    return 0;
}


gcc -fopenmp parallel_loop_openmp.c -o parallel_loop_openmp
./parallel_loop_openmp



3. create scripts to run MPI helloWorld and an example for parallel loop


module load mpich/ge/gcc/64/3.2rc2


#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);  // Initialize the MPI environment

    int world_size;
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);  // Get the number of processes

    int world_rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);  // Get the rank of the process

    printf("Hello World from process %d of %d\n", world_rank, world_size);

    MPI_Finalize();  // Finalize the MPI environment
    return 0;
}


mpicc hello_mpi.c -o hello_mpi  # Compile the program
mpirun -np 4 ./hello_mpi        # Run the program with 4 processes


#include <mpi.h>
#include <stdio.h>

#define N 100

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);  // Initialize the MPI environment

    int world_size;
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);  // Get the number of processes

    int world_rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);  // Get the rank of the process

    int array[N];
    int local_N = N / world_size;  // Number of elements per process

    // Initialize the array in the root process (rank 0)
    if (world_rank == 0) {
        for (int i = 0; i < N; i++) {
            array[i] = i;
        }
    }

    // Scatter the array to all processes
    int local_array[local_N];
    MPI_Scatter(array, local_N, MPI_INT, local_array, local_N, MPI_INT, 0, MPI_COMM_WORLD);

    // Perform the computation locally
    for (int i = 0; i < local_N; i++) {
        local_array[i] = local_array[i] * local_array[i];
    }

    // Gather the results back to the root process
    MPI_Gather(local_array, local_N, MPI_INT, array, local_N, MPI_INT, 0, MPI_COMM_WORLD);

    // Print the results in the root process
    if (world_rank == 0) {
        for (int i = 0; i < N; i++) {
            printf("array[%d] = %d\n", i, array[i]);
        }
    }

    MPI_Finalize();  // Finalize the MPI environment
    return 0;
}



mpicc -std=c99 parallel_loop_mpi.c -o parallel_loop_mpi
mpirun -np 4 ./parallel_loop_mpi



2. Write serial and MPI versions of blowfish


blowfish_serial.c

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <openssl/blowfish.h>

#define DATA_SIZE 100000000 // Larger dataset to exaggerate difference

void blowfish_encrypt(BF_KEY *key, uint8_t *data, size_t data_len, uint8_t *encrypted) {
    size_t i;
    for (i = 0; i < data_len; i += 8) {
        BF_ecb_encrypt(data + i, encrypted + i, key, BF_ENCRYPT);
    }
}

void blowfish_decrypt(BF_KEY *key, uint8_t *data, size_t data_len, uint8_t *decrypted) {
    size_t i;
    for (i = 0; i < data_len; i += 8) {
        BF_ecb_encrypt(data + i, decrypted + i, key, BF_DECRYPT);
    }
}

int main() {
    BF_KEY key;
    uint8_t *data = malloc(DATA_SIZE);
    uint8_t *encrypted = malloc(DATA_SIZE + 8); // Adding padding space
    uint8_t *decrypted = malloc(DATA_SIZE);

    // Initialize data
    size_t i;
    for (i = 0; i < DATA_SIZE; ++i) {
        data[i] = 'A' + (i % 26);
    }

    uint8_t key_data[16];
    for (i = 0; i < 16; ++i) {
        key_data[i] = rand() % 256;
    }

    BF_set_key(&key, 16, key_data);

    clock_t start, end;
    double cpu_time_used;

    start = clock();
    blowfish_encrypt(&key, data, DATA_SIZE, encrypted);
    end = clock();
    cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
    printf("Encryption time (serial): %f seconds\n", cpu_time_used);

    start = clock();
    blowfish_decrypt(&key, encrypted, DATA_SIZE, decrypted);
    end = clock();
    cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
    printf("Decryption time (serial): %f seconds\n", cpu_time_used);

    // Validate the decrypted data
    if (memcmp(data, decrypted, DATA_SIZE) != 0) {
        printf("Decrypted data does not match original data!\n");
    } else {
        printf("Decrypted data matches original data!\n");
    }

    free(data);
    free(encrypted);
    free(decrypted);

    return 0;
}




gcc blowfish_serial.c -o blowfish_serial -lcrypto -std=99
./blowfish_serial





blowfish_mpi.c

#include <mpi.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <openssl/blowfish.h>

#define DATA_SIZE 100000000 // Larger dataset to exaggerate difference

void blowfish_encrypt(BF_KEY *key, uint8_t *data, size_t data_len, uint8_t *encrypted) {
    size_t i;
    for (i = 0; i < data_len; i += 8) {
        BF_ecb_encrypt(data + i, encrypted + i, key, BF_ENCRYPT);
    }
}

void blowfish_decrypt(BF_KEY *key, uint8_t *data, size_t data_len, uint8_t *decrypted) {
    size_t i;
    for (i = 0; i < data_len; i += 8) {
        BF_ecb_encrypt(data + i, decrypted + i, key, BF_DECRYPT);
    }
}

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);

    int rank, size;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    BF_KEY key;
    uint8_t key_data[16];
    size_t i;
    for (i = 0; i < 16; ++i) {
        key_data[i] = rand() % 256;
    }
    BF_set_key(&key, 16, key_data);

    size_t chunk_size = DATA_SIZE / size;
    uint8_t *local_data = malloc(chunk_size);
    uint8_t *local_encrypted = malloc(chunk_size + 8); // Adding padding space
    uint8_t *local_decrypted = malloc(chunk_size);

    if (rank == 0) {
        uint8_t *data = malloc(DATA_SIZE);
        uint8_t *encrypted = malloc(DATA_SIZE + 8 * size); // Adding padding space
        uint8_t *decrypted = malloc(DATA_SIZE);

        // Initialize data
        for (i = 0; i < DATA_SIZE; ++i) {
            data[i] = 'A' + (i % 26);
        }

        double start, end;

        // Scatter data to all processes
        MPI_Scatter(data, chunk_size, MPI_BYTE, local_data, chunk_size, MPI_BYTE, 0, MPI_COMM_WORLD);

        start = MPI_Wtime();
        blowfish_encrypt(&key, local_data, chunk_size, local_encrypted);
        end = MPI_Wtime();
        printf("Process %d encryption time: %f seconds\n", rank, end - start);

        // Gather encrypted data from all processes
        MPI_Gather(local_encrypted, chunk_size, MPI_BYTE, encrypted, chunk_size, MPI_BYTE, 0, MPI_COMM_WORLD);

        start = MPI_Wtime();
        blowfish_decrypt(&key, encrypted, DATA_SIZE, decrypted);
        end = MPI_Wtime();
        printf("Decryption time (parallel): %f seconds\n", end - start);

        // Validate the decrypted data
        if (memcmp(data, decrypted, DATA_SIZE) != 0) {
            printf("Decrypted data does not match original data!\n");
        } else {
            printf("Decrypted data matches original data!\n");
        }

        free(data);
        free(encrypted);
        free(decrypted);
    } else {
        // Receive data chunk from root process
        MPI_Scatter(NULL, chunk_size, MPI_BYTE, local_data, chunk_size, MPI_BYTE, 0, MPI_COMM_WORLD);

        double start, end;

        start = MPI_Wtime();
        blowfish_encrypt(&key, local_data, chunk_size, local_encrypted);
        end = MPI_Wtime();
        printf("Process %d encryption time: %f seconds\n", rank, end - start);

        // Send encrypted data chunk to root process
        MPI_Gather(local_encrypted, chunk_size, MPI_BYTE, NULL, chunk_size, MPI_BYTE, 0, MPI_COMM_WORLD);
    }

    free(local_data);
    free(local_encrypted);
    free(local_decrypted);

    MPI_Finalize();

    return 0;
}




mpicc blowfish_mpi.c -o blowfish_mpi -lcrypto
mpirun -np 4 ./blowfish_mpi



./blowfish_serial
Encryption time (serial): 0.660000 seconds
Decryption time (serial): 0.640000 seconds

mpirun -np 4 ./blowfish_mpi
Process 1 encryption time: 0.168639 seconds
Process 3 encryption time: 0.174601 seconds
Process 0 encryption time: 0.174799 seconds
Process 2 encryption time: 0.174592 seconds
Decryption time (parallel): 0.700148 seconds



encryption time of each process in the mpi task is 4 times faster than the serial job. The decryption is slightly worse than serial job because of the 
overhead  in gathering the data from multiple processes.

using SLURM:

-N 1
-p 128GB

Encryption time (serial): 0.960000 seconds
Decryption time (serial): 0.960000 seconds
Decrypted data matches original data!


-N 2
-p 128GB

Process 1 encryption time: 0.476727 seconds
Process 0 encryption time: 0.476585 seconds
Decryption time (parallel): 0.954134 seconds
Decrypted data matches original data!


-N 3
-p 128GB

Process 1 encryption time: 0.326551 seconds
Process 2 encryption time: 0.323678 seconds
Process 0 encryption time: 0.323797 seconds
Decryption time (parallel): 0.970143 seconds



-N 4
-p 128GB 

Process 1 encryption time: 0.243206 seconds
Process 3 encryption time: 0.243105 seconds
Process 0 encryption time: 0.240108 seconds
Process 2 encryption time: 0.240205 seconds
Decryption time (parallel): 0.961980 seconds
Decrypted data matches original data!


-N 5
-p 128GB

Process 3 encryption time: 0.193014 seconds	
Process 4 encryption time: 0.207064 seconds
Process 0 encryption time: 0.196599 seconds
Process 2 encryption time: 0.196809 seconds
Process 1 encryption time: 0.205737 seconds
Decryption time (parallel): 0.983177 seconds
Decrypted data matches original data!


-N 6
-p 128GB

Process 5 encryption time: 0.164433 seconds
Process 4 encryption time: 0.163639 seconds
Process 1 encryption time: 0.161994 seconds
Process 3 encryption time: 0.163783 seconds
Process 2 encryption time: 0.162038 seconds
Process 0 encryption time: 0.163603 seconds
Decryption time (parallel): 1.002695 seconds






Key Concepts regarding Process, Threads, Multiprocessing, Multithreading, MPI

Process:

A process is an instance of a program that is being executed. It contains the program code and its current activity.
Each process has its own separate memory space. This means that processes do not share memory with each other. They have their own address space, stack, and heap.
Processes are isolated from each other. A crash in one process does not affect other processes. This makes them more robust for executing separate tasks.
Since processes do not share memory, they need to use IPC mechanisms like pipes, sockets, shared memory, or message passing to communicate with each other.
Creating and managing processes has more overhead compared to threads because each process requires its own memory space and system resources.
Examples: Web browsers (where each tab might be a separate process), operating system services, and servers


Thread:

A thread is the smallest unit of execution within a process. Multiple threads can exist within the same process and share the same memory space.
A thread is the smallest unit of execution within a process. Multiple threads can exist within the same process and share the same memory space.
Since threads share the same memory space, they can communicate with each other more easily and efficiently than processes. This allows for faster context switching and data sharing.
Creating and managing threads has less overhead compared to processes because threads share resources of the parent process.
Threads are not isolated from each other. A crash in one thread can potentially bring down the entire process, affecting all other threads within that process.
Multithreaded applications like web servers (where each thread handles a client request), GUI applications (where one thread handles user input while another performs background tasks), and parallel algorithms



Processes cannot run in true parallelism on a single-core system. On a single-core system, only one process can execute at a time. However, multiple processes can achieve concurrency through context switching, where the operating system rapidly switches between processes, giving the illusion that they are running simultaneously.
Threads within the same process share the same memory space, which is more efficient for communication but requires careful synchronization to avoid race conditions.
Similar to processes, there are operating system-imposed limits on the number of threads per process and the total memory that can be allocated.

Parallelism:

Definition: Performing multiple operations simultaneously.
Requirement: Requires multiple CPU cores.
Execution: True parallelism is only possible on multi-core systems, where different processes or threads can be executed on different cores at the same time.

Concurrency:

Definition: Managing multiple tasks at the same time.
Requirement: Can be achieved on single-core or multi-core systems.
Execution: On a single-core system, concurrency is achieved through context switching, where the CPU switches between processes or threads, giving the appearance of simultaneous execution.

Single-Core System

Concurrency: The operating system uses context switching to manage multiple processes. It rapidly switches between them, so each process gets a slice of CPU time.
Parallelism: True parallelism is not possible because there is only one CPU core available to execute instructions.

Multi-Core System
Concurrency: Concurrency is still achieved through context switching, but with multiple cores, some processes can run truly in parallel.
Parallelism: True parallelism is achieved because multiple processes or threads can be executed on different cores simultaneously.