Skip to content
Snippets Groups Projects
Commit bce3ebcb authored by Venkat Malladi's avatar Venkat Malladi
Browse files

Update code that was not previously saved.

parent 662ba080
Branches
No related merge requests found
......@@ -11,7 +11,7 @@ import scipy
fpkm = pd.read_table("rna.tsv")
gene_names_mapping = pd.read_csv("../gencode.v19.annotation_protein_coding_ids.txt",names=['gene_id', 'symbol'])
fpkm_symbol = fpkm.merge(gene_names_mapping)
fpkm_symbol = fpkm_symbol.set_index(['gene_id'])
fpkm_symbol = fpkm.set_index(['gene_id'])
# Enhancers
enhancers_universe = pd.DataFrame.from_csv("GRO-seq_enhancers.bed", sep="\t", header=None, index_col=3)
......@@ -52,7 +52,7 @@ plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_4_genes_fpkm.png')
plt.clf()
# Cluster tfs 1 e-4
# Cluster tfs 0.05
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D2'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D5'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D7'])
......@@ -78,17 +78,17 @@ enhancers_universe_cluster_3.to_csv("cluster_3_enhancers_locations.bed", sep="\t
# Read in nearest genes
genes_id = pd.DataFrame.from_csv("cluster_4_genes.txt", sep="\t", header=None, index_col=None)
genes_id = pd.DataFrame.from_csv("cluster_3_genes.txt", sep="\t", header=None, index_col=None)
needed_rows = [row for row in fpkm_symbol.index if row in genes_id[0].values]
cluster4_genes_expressed = fpkm_symbol.loc[needed_rows]
cluster3_genes_expressed = fpkm_symbol.loc[needed_rows]
# col_colors
plt.style.use('classic')
colors = ["#FFD66F","#2E6A44","#862743", "#4FA6C7", "#3398CC"]
medianprops = dict(linestyle='-', linewidth=2, color='black')
box = cluster4_genes_expressed.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
box = cluster3_genes_expressed.boxplot(column=['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'],patch_artist=True,showfliers=False,manage_xticks=False,widths = 0.6, medianprops = medianprops)
plt.setp(box['whiskers'], color='k', linestyle='-', linewidth = 5)
plt.setp(box['boxes'], color='k', linestyle='-', linewidth = 5)
......@@ -99,23 +99,23 @@ plt.tick_params(axis='y', direction='out')
plt.tick_params(axis='x', direction='out')
plt.tick_params(top='off', right='off')
plt.grid(b=False)
plt.ylim((-5,60))
plt.ylim((-5,50))
plt.xticks([1,2,3,4,5], ['ES_D0', 'ES_D2', 'ES_D5', 'ES_D7', 'ES_D10'])
plt.savefig('box_plot_cluster_4_genes_fpkm.png')
plt.savefig('box_plot_cluster_3_genes_fpkm.png')
plt.clf()
# Cluster tfs 1 e-4
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D2'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D5'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D0'],cluster4_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D0'],cluster3_genes_expressed['ES_D2'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D0'],cluster3_genes_expressed['ES_D5'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D0'],cluster3_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D0'],cluster3_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D2'],cluster4_genes_expressed['ES_D5'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D2'],cluster4_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D2'],cluster4_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D2'],cluster3_genes_expressed['ES_D5'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D2'],cluster3_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D2'],cluster3_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D5'],cluster4_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D5'],cluster4_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D5'],cluster3_genes_expressed['ES_D7'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D5'],cluster3_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster4_genes_expressed['ES_D7'],cluster4_genes_expressed['ES_D10'])
scipy.stats.ranksums(cluster3_genes_expressed['ES_D7'],cluster3_genes_expressed['ES_D10'])
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment