Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
sc-TissueMapper_Pr
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Strand Lab
sc-TissueMapper_Pr
Commits
e2ef9276
Commit
e2ef9276
authored
6 years ago
by
Gervaise Henry
Browse files
Options
Downloads
Patches
Plain Diff
Add R & bash scripts for D27_FACS
parent
6663b617
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!2
Merge develop into master
,
!1
Merge FACS into Develop
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bash.scripts/sc_TissueMapper-D27_FACS.sh
+13
-0
13 additions, 0 deletions
bash.scripts/sc_TissueMapper-D27_FACS.sh
r.scripts/sc-TissueMapper_RUN.D27_FACS.R
+362
-0
362 additions, 0 deletions
r.scripts/sc-TissueMapper_RUN.D27_FACS.R
with
375 additions
and
0 deletions
bash.scripts/sc_TissueMapper-D27_FACS.sh
0 → 100644
+
13
−
0
View file @
e2ef9276
#!/bin/bash
#SBATCH --job-name R_FullAnalysis
#SBATCH -p 256GB,256GBv1,384GB
#SBATCH -N 1
#SBATCH -t 7-0:0:0
#SBATCH -o job_%j.out
#SBATCH -e job_%j.out
#SBATCH --mail-type ALL
#SBATCH --mail-user gervaise.henry@utsouthwestern.edu
module load R/3.4.1-gccmkl
Rscript ../r.scripts/sc-TissueMapper_RUN.D27_FACS.R
This diff is collapsed.
Click to expand it.
r.scripts/sc-TissueMapper_RUN.D27_FACS.R
0 → 100644
+
362
−
0
View file @
e2ef9276
gc
()
library
(
methods
)
library
(
optparse
)
library
(
Seurat
)
library
(
readr
)
library
(
fBasics
)
library
(
pastecs
)
library
(
qusage
)
library
(
RColorBrewer
)
library
(
monocle
)
library
(
dplyr
)
library
(
viridis
)
source
(
"../r.scripts/sc-TissueMapper.R"
)
#Create folder structure
setwd
(
"../"
)
if
(
!
dir.exists
(
"./analysis"
)){
dir.create
(
"./analysis"
)
}
if
(
!
dir.exists
(
"./analysis/qc"
)){
dir.create
(
"./analysis/qc"
)
}
if
(
!
dir.exists
(
"./analysis/qc/cc"
)){
dir.create
(
"./analysis/qc/cc"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE"
)){
dir.create
(
"./analysis/tSNE"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/pre.stress"
)){
dir.create
(
"./analysis/tSNE/pre.stress"
)
}
if
(
!
dir.exists
(
"./analysis/pca"
)){
dir.create
(
"./analysis/pca"
)
}
if
(
!
dir.exists
(
"./analysis/pca/stress"
)){
dir.create
(
"./analysis/pca/stress"
)
}
if
(
!
dir.exists
(
"./analysis/violin"
)){
dir.create
(
"./analysis/violin"
)
}
if
(
!
dir.exists
(
"./analysis/violin/stress"
)){
dir.create
(
"./analysis/violin/stress"
)
}
if
(
!
dir.exists
(
"./analysis/table"
)){
dir.create
(
"./analysis/table"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/post.stress"
)){
dir.create
(
"./analysis/tSNE/post.stress"
)
}
if
(
!
dir.exists
(
"./analysis/cor"
)){
dir.create
(
"./analysis/cor"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/lin"
)){
dir.create
(
"./analysis/tSNE/lin"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/epi"
)){
dir.create
(
"./analysis/tSNE/epi"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/st"
)){
dir.create
(
"./analysis/tSNE/st"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/merge"
)){
dir.create
(
"./analysis/tSNE/merge"
)
}
if
(
!
dir.exists
(
"./analysis/pca/ne"
)){
dir.create
(
"./analysis/pca/ne"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/ne"
)){
dir.create
(
"./analysis/tSNE/ne"
)
}
if
(
!
dir.exists
(
"./analysis/violin/ne"
)){
dir.create
(
"./analysis/violin/ne"
)
}
if
(
!
dir.exists
(
"./analysis/tSNE/FINAL"
)){
dir.create
(
"./analysis/tSNE/FINAL"
)
}
if
(
!
dir.exists
(
"./analysis/deg"
)){
dir.create
(
"./analysis/deg"
)
}
if
(
!
dir.exists
(
"./analysis/cca"
)){
dir.create
(
"./analysis/cca"
)
}
if
(
!
dir.exists
(
"./analysis/diy"
)){
dir.create
(
"./analysis/diy"
)
}
if
(
!
dir.exists
(
"./analysis/pseudotime"
)){
dir.create
(
"./analysis/pseudotime"
)
}
#Retrieve command-line options
option_list
=
list
(
make_option
(
"--p"
,
action
=
"store"
,
default
=
"DPrF"
,
type
=
'character'
,
help
=
"Project Name"
),
make_option
(
"--g"
,
action
=
"store"
,
default
=
"ALL"
,
type
=
'character'
,
help
=
"Group To analyze"
),
make_option
(
"--lg"
,
action
=
"store"
,
default
=
500
,
type
=
'integer'
,
help
=
"Threshold for cells with minimum genes"
),
make_option
(
"--hg"
,
action
=
"store"
,
default
=
3000
,
type
=
'integer'
,
help
=
"Threshold for cells with maximum genes"
),
make_option
(
"--lm"
,
action
=
"store"
,
default
=
0
,
type
=
'numeric'
,
help
=
"Threshold for cells with minimum %mito genes"
),
make_option
(
"--hm"
,
action
=
"store"
,
default
=
0.1
,
type
=
'numeric'
,
help
=
"Threshold for cells with maximum %mito genes"
),
make_option
(
"--lx"
,
action
=
"store"
,
default
=
0.2
,
type
=
'numeric'
,
help
=
"x low threshold for hvg selection"
),
make_option
(
"--hx"
,
action
=
"store"
,
default
=
5
,
type
=
'numeric'
,
help
=
"x high threshold for hvg selection"
),
make_option
(
"--ly"
,
action
=
"store"
,
default
=
1
,
type
=
'numeric'
,
help
=
"y low threshold for hvg selection"
),
make_option
(
"--cc"
,
action
=
"store"
,
default
=
TRUE
,
type
=
'logical'
,
help
=
"Scale cell cycle?"
),
make_option
(
"--cca"
,
action
=
"store"
,
default
=
50
,
type
=
'integer'
,
help
=
"Number of CCAs to cacluate"
),
make_option
(
"--acca"
,
action
=
"store"
,
default
=
30
,
type
=
'integer'
,
help
=
"Number of CCAs to align"
),
make_option
(
"--pc"
,
action
=
"store"
,
default
=
50
,
type
=
'integer'
,
help
=
"Number of PCs to cacluate"
),
make_option
(
"--res.prestress"
,
action
=
"store"
,
default
=
1
,
type
=
'numeric'
,
help
=
"Resolution to cluster, pre-stress"
),
make_option
(
"--st"
,
action
=
"store"
,
default
=
TRUE
,
type
=
'logical'
,
help
=
"Remove stressed cells?"
),
make_option
(
"--stg"
,
action
=
"store"
,
default
=
"dws"
,
type
=
'character'
,
help
=
"Geneset to use for stress ID"
),
make_option
(
"--cut.stress"
,
action
=
"store"
,
default
=
0.9
,
type
=
'numeric'
,
help
=
"Cutoff for stress score"
),
make_option
(
"--res.poststress"
,
action
=
"store"
,
default
=
0.5
,
type
=
'numeric'
,
help
=
"Resolution to cluster, post-stress"
),
make_option
(
"--cut.ne"
,
action
=
"store"
,
default
=
0.999
,
type
=
'numeric'
,
help
=
"Cutoff for NE score"
)
)
opt
=
parse_args
(
OptionParser
(
option_list
=
option_list
))
rm
(
option_list
)
if
(
opt
$
lm
==
0
){
opt
$
lm
=-
Inf
}
sc10x
<-
scLoad
(
"D27_FACS"
)
if
(
opt
$
cc
==
TRUE
){
results
<-
scCellCycle
(
sc10x
)
sc10x
<-
results
[[
1
]]
genes.s
<-
results
[[
2
]]
genes.g2m
<-
results
[[
3
]]
rm
(
results
)
}
else
{
genes.s
=
""
genes.g2m
=
""
}
results
<-
scQC
(
sc10x
,
lg
=
opt
$
lg
,
hg
=
opt
$
hg
,
lm
=
opt
$
lm
,
hm
=
opt
$
hm
)
sc10x
<-
results
[[
1
]]
counts.cell.raw
<-
results
[[
2
]]
counts.gene.raw
<-
results
[[
3
]]
counts.cell.filtered
<-
results
[[
4
]]
counts.gene.filtered
<-
results
[[
5
]]
rm
(
results
)
gc
()
if
(
opt
$
cc
==
TRUE
){
sc10x
<-
ScaleData
(
object
=
sc10x
,
vars.to.regress
=
c
(
"nUMI"
,
"percent.mito"
,
"S.Score"
,
"G2M.Score"
),
display.progress
=
FALSE
,
do.par
=
TRUE
,
num.cores
=
45
)
}
else
{
sc10x
<-
ScaleData
(
object
=
sc10x
,
vars.to.regress
=
c
(
"nUMI"
,
"percent.mito"
),
display.progress
=
FALSE
,
do.par
=
TRUE
,
num.cores
=
45
)
}
gc
()
results
<-
scPC
(
sc10x
,
lx
=
opt
$
lx
,
hx
=
opt
$
hx
,
ly
=
opt
$
ly
,
cc
=
opt
$
cc
,
pc
=
50
,
hpc
=
0.85
,
file
=
"pre.stress"
,
cca
=
FALSE
)
sc10x
<-
results
[[
1
]]
genes.hvg.prestress
<-
results
[[
2
]]
pc.use.prestress
<-
results
[[
3
]]
rm
(
results
)
sc10x
<-
scCluster
(
sc10x
,
pc.use
=
pc.use.prestress
,
res.use
=
opt
$
res.prestress
,
folder
=
"pre.stress"
,
red
=
"pca"
)
if
(
opt
$
st
==
TRUE
){
results
<-
scStress
(
sc10x
,
stg
=
opt
$
stg
,
res.use
=
opt
$
res.prestress
,
cut
=
opt
$
cut.stress
)
sc10x
<-
results
[[
1
]]
counts.cell.filtered.stress
<-
results
[[
2
]]
sc10x.Stress
<-
results
[[
3
]]
rm
(
results
)
results
<-
scPC
(
sc10x
,
lx
=
opt
$
lx
,
hx
=
opt
$
hx
,
ly
=
opt
$
ly
,
cc
=
opt
$
cc
,
pc
=
50
,
hpc
=
0.85
,
file
=
"post.stress"
,
cca
=
FALSE
)
sc10x
<-
results
[[
1
]]
genes.hvg.poststress
<-
results
[[
2
]]
pc.use.poststress
<-
results
[[
3
]]
rm
(
results
)
sc10x
<-
scCluster
(
sc10x
,
pc.use
=
pc.use.poststress
,
res.use
=
0.5
,
folder
=
"post.stress"
,
red
=
"pca"
)
}
gene.set1
<-
read_delim
(
"./genesets/genes.deg.Epi.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"Epi"
gene.set
<-
c
(
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.St.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"St"
gene.set
<-
c
(
gene.set
,
gene.set1
)
rm
(
gene.set1
)
gc
()
min.all
<-
min
(
table
(
sc10x
@
meta.data
[,
paste0
(
"res"
,
opt
$
res.poststress
)]))
results
<-
scQuSAGE
(
sc10x
,
gs
=
gene.set
,
res.use
=
opt
$
res.poststress
,
ds
=
min.all
,
nm
=
"Lin"
,
folder
=
"lin"
)
sc10x
<-
results
[[
1
]]
results.cor.Lin
<-
results
[[
2
]]
results.clust.Lin.id
<-
results
[[
3
]]
rm
(
results
)
rm
(
gene.set
)
sc10x
<-
SetAllIdent
(
object
=
sc10x
,
id
=
"Lin"
)
sc10x.Epi
<-
scSubset
(
sc10x
,
i
=
"Lin"
,
g
=
"Epi"
)
if
(
any
(
levels
(
sc10x
@
ident
)
==
"Unknown"
)){
sc10x.St
<-
scSubset
(
sc10x
,
i
=
"Lin"
,
g
=
c
(
"St"
,
"Unknown"
))
}
else
{
sc10x.St
<-
scSubset
(
sc10x
,
i
=
"Lin"
,
g
=
"St"
)
}
sc10x.Epi
<-
SetAllIdent
(
object
=
sc10x.Epi
,
id
=
paste0
(
"res"
,
opt
$
res.poststress
))
sc10x.Epi
<-
BuildClusterTree
(
sc10x.Epi
,
do.reorder
=
TRUE
,
reorder.numeric
=
TRUE
,
do.plot
=
FALSE
)
sc10x.Epi
<-
StashIdent
(
object
=
sc10x.Epi
,
save.name
=
paste0
(
"res"
,
opt
$
res.poststress
))
sc10x.St
<-
SetAllIdent
(
object
=
sc10x.St
,
id
=
paste0
(
"res"
,
opt
$
res.poststress
))
sc10x.St
<-
BuildClusterTree
(
sc10x.St
,
do.reorder
=
TRUE
,
reorder.numeric
=
TRUE
,
do.plot
=
FALSE
)
sc10x.St
<-
StashIdent
(
object
=
sc10x.St
,
save.name
=
paste0
(
"res"
,
opt
$
res.poststress
))
sc10x.Epi
<-
RunTSNE
(
object
=
sc10x.Epi
,
reduction.use
=
"pca"
,
dims.use
=
1
:
pc.use.poststress
,
do.fast
=
TRUE
)
postscript
(
paste0
(
"./analysis/tSNE/epi/tSNE_Sample.eps"
))
plot
<-
TSNEPlot
(
object
=
sc10x.Epi
,
group.by
=
"samples"
,
pt.size
=
2.5
,
do.return
=
TRUE
,
vector.friendly
=
FALSE
)
plot
<-
plot
+
theme
(
axis.text.x
=
element_text
(
size
=
20
),
axis.text.y
=
element_text
(
size
=
20
),
axis.title.x
=
element_text
(
size
=
20
),
axis.title.y
=
element_text
(
size
=
20
),
legend.text
=
element_text
(
size
=
20
))
plot
<-
plot
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
10
)))
plot
(
plot
)
dev.off
()
postscript
(
paste0
(
"./analysis/tSNE/epi/tSNE_res"
,
opt
$
res.poststress
,
".eps"
))
plot
<-
TSNEPlot
(
object
=
sc10x.Epi
,
pt.size
=
5
,
do.label
=
TRUE
,
label.size
=
10
,
do.return
=
TRUE
,
vector.friendly
=
FALSE
)
plot
<-
plot
+
theme
(
axis.text.x
=
element_text
(
size
=
20
),
axis.text.y
=
element_text
(
size
=
20
),
axis.title.x
=
element_text
(
size
=
20
),
axis.title.y
=
element_text
(
size
=
20
),
legend.text
=
element_text
(
size
=
20
))
plot
<-
plot
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
10
)))
plot
(
plot
)
dev.off
()
rm
(
plot
)
sc10x.St
<-
RunTSNE
(
object
=
sc10x.St
,
reduction.use
=
"pca"
,
dims.use
=
1
:
pc.use.poststress
,
do.fast
=
TRUE
)
postscript
(
paste0
(
"./analysis/tSNE/st/tSNE_Sample.eps"
))
plot
<-
TSNEPlot
(
object
=
sc10x.St
,
group.by
=
"samples"
,
pt.size
=
2.5
,
do.return
=
TRUE
,
vector.friendly
=
FALSE
)
plot
<-
plot
+
theme
(
axis.text.x
=
element_text
(
size
=
20
),
axis.text.y
=
element_text
(
size
=
20
),
axis.title.x
=
element_text
(
size
=
20
),
axis.title.y
=
element_text
(
size
=
20
),
legend.text
=
element_text
(
size
=
20
))
plot
<-
plot
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
10
)))
plot
(
plot
)
dev.off
()
postscript
(
paste0
(
"./analysis/tSNE/st/tSNE_res"
,
opt
$
res.poststress
,
".eps"
))
plot
<-
TSNEPlot
(
object
=
sc10x.St
,
pt.size
=
5
,
do.label
=
TRUE
,
label.size
=
10
,
do.return
=
TRUE
,
vector.friendly
=
FALSE
)
plot
<-
plot
+
theme
(
axis.text.x
=
element_text
(
size
=
20
),
axis.text.y
=
element_text
(
size
=
20
),
axis.title.x
=
element_text
(
size
=
20
),
axis.title.y
=
element_text
(
size
=
20
),
legend.text
=
element_text
(
size
=
20
))
plot
<-
plot
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
10
)))
plot
(
plot
)
dev.off
()
rm
(
plot
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.BE.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"BE"
gene.set
<-
c
(
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.LE.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"LE"
gene.set
<-
c
(
gene.set
,
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.OE1.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"OE_SCGB"
gene.set
<-
c
(
gene.set
,
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.OE2.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"OE_KRT13"
gene.set
<-
c
(
gene.set
,
gene.set1
)
rm
(
gene.set1
)
gc
()
min.epi
<-
min
(
table
(
sc10x.Epi
@
meta.data
[,
paste0
(
"res"
,
opt
$
res.poststress
)]))
results
<-
scQuSAGE
(
sc10x.Epi
,
gs
=
gene.set
,
res.use
=
opt
$
res.poststress
,
ds
=
min.epi
,
nm
=
"Epi.dws.sc"
,
folder
=
"epi"
)
sc10x.Epi
<-
results
[[
1
]]
results.cor.Epi.dws
<-
results
[[
2
]]
results.clust.Epi.dws.id
<-
results
[[
3
]]
rm
(
results
)
rm
(
gene.set
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.Endo.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"Endo"
gene.set
<-
c
(
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.SM.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"SM"
gene.set
<-
c
(
gene.set
,
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.Fib.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"Fib"
gene.set
<-
c
(
gene.set
,
gene.set1
)
gene.set1
<-
read_delim
(
"./genesets/genes.deg.Leu.csv"
,
","
,
escape_double
=
FALSE
,
trim_ws
=
TRUE
,
col_names
=
TRUE
)
gene.set1
<-
gene.set1
[
1
]
gene.set1
<-
as.list
(
gene.set1
)
names
(
gene.set1
)
<-
"Leu"
gene.set
<-
c
(
gene.set
,
gene.set1
)
rm
(
gene.set1
)
gc
()
min.st
<-
min
(
table
(
sc10x.St
@
meta.data
[,
paste0
(
"res"
,
opt
$
res.poststress
)]))
results
<-
scQuSAGE
(
sc10x.St
,
gs
=
gene.set
,
res.use
=
opt
$
res.poststress
,
ds
=
min.st
,
nm
=
"St.dws.sc"
,
folder
=
"st"
)
sc10x.St
<-
results
[[
1
]]
results.cor.St.go
<-
results
[[
2
]]
results.clust.St.go.id
<-
results
[[
3
]]
rm
(
results
)
rm
(
gene.set
)
sc10x.Epi.NE
<-
scNE
(
sc10x.Epi
,
neg
=
"dws"
,
cut
=
opt
$
cut.ne
)
sc10x
<-
scMerge
(
sc10x
,
sc10x.Epi
,
sc10x.St
,
i.1
=
"Epi.dws.sc"
,
i.2
=
"St.dws.sc"
,
nm
=
"Merge_Epi.dws.sc_St.dws.sc"
)
sc10x
<-
scMerge
(
sc10x
,
sc10x
,
sc10x.Epi.NE
,
i.1
=
"Merge_Epi.dws.sc_St.dws.sc"
,
i.2
=
"NE"
,
nm
=
"Merge_Epi.dws.sc_St.dws.sc_NE"
)
sc10x.Epi
<-
scMerge
(
sc10x.Epi
,
sc10x.Epi
,
sc10x.Epi.NE
,
i.1
=
"Epi.dws.sc"
,
i.2
=
"NE"
,
nm
=
"Epi.dws.sc_NE"
)
sc10x
<-
SetAllIdent
(
object
=
sc10x
,
id
=
"samples"
)
sc10x
<-
SetIdent
(
object
=
sc10x
,
cells.use
=
names
(
sc10x
@
ident
[
sc10x
@
ident
%in%
c
(
"D27PrTzF_StPDPNn"
,
"D27PrTzF_StPDPNp"
)]),
ident.use
=
"St"
)
sc10x
<-
StashIdent
(
object
=
sc10x
,
save.name
=
"msamples"
)
sc10x
<-
SetAllIdent
(
object
=
sc10x
,
id
=
"Merge_Epi.dws.sc_St.dws.sc"
)
sc10x
@
ident
<-
factor
(
sc10x
@
ident
,
levels
=
c
(
"BE"
,
"LE"
,
"OE_SCGB"
,
"OE_KRT13"
,
"Fib"
,
"SM"
,
"Endo"
,
"Leu"
))
postscript
(
"./analysis/tSNE/FINAL/tSNE_FINAL.eps"
)
plot
<-
TSNEPlot
(
object
=
sc10x
,
pt.size
=
2.5
,
do.return
=
TRUE
,
vector.friendly
=
FALSE
)
plot
<-
plot
+
theme
(
axis.text.x
=
element_text
(
size
=
20
),
axis.text.y
=
element_text
(
size
=
20
),
axis.title.x
=
element_text
(
size
=
20
),
axis.title.y
=
element_text
(
size
=
20
),
legend.text
=
element_text
(
size
=
20
))
plot
<-
plot
+
guides
(
colour
=
guide_legend
(
override.aes
=
list
(
size
=
10
)))
plot
(
plot
)
dev.off
()
scTables
(
sc10x
,
i.1
=
"samples"
,
i.2
=
"Merge_Epi.dws.sc_St.dws.sc"
)
scTables
(
sc10x
,
i.1
=
"samples"
,
i.2
=
"Merge_Epi.dws.sc_St.dws.sc_NE"
)
scTables
(
sc10x
,
i.1
=
"Merge_Epi.dws.sc_St.dws.sc_NE"
,
i.2
=
"Merge_Epi.dws.sc_St.dws.sc"
)
sctSNECustCol
(
sc10x
,
i
=
"Lin"
,
bl
=
"Epi"
,
rd
=
"St"
,
file
=
"D27"
)
sctSNECustCol
(
sc10x
,
i
=
"Merge_Epi.dws.sc_St.dws.sc"
,
bl
=
c
(
"BE"
,
"LE"
,
"OE_SCGB"
,
"OE_KRT13"
),
rd
=
c
(
"Fib"
,
"SM"
,
"Endo"
,
"Leu"
),
file
=
"D27"
)
sctSNECustCol
(
sc10x.Epi
,
i
=
"Epi.dws.sc"
,
bl
=
c
(
"BE"
,
"LE"
,
"OE_SCGB"
,
"OE_KRT13"
),
rd
=
""
,
file
=
"D27"
)
sctSNECustCol
(
sc10x.St
,
i
=
"St.dws.sc"
,
bl
=
""
,
rd
=
c
(
"Fib"
,
"SM"
,
"Endo"
,
"Leu"
),
file
=
"D27"
)
sctSNEbwCol
(
sc10x
,
i
=
paste0
(
"res"
,
opt
$
res.poststress
),
file
=
"ALL"
,
files
=
"D27"
)
sctSNEbwCol
(
sc10x.Epi
,
i
=
paste0
(
"res"
,
opt
$
res.poststress
),
file
=
"Epi"
,
files
=
"D27"
)
sctSNEbwCol
(
sc10x.St
,
i
=
paste0
(
"res"
,
opt
$
res.poststress
),
file
=
"St"
,
files
=
"D27"
)
sctSNEbwCol
(
sc10x
,
i
=
"Merge_Epi.dws.sc_St.dws.sc"
,
file
=
"ALL"
,
files
=
"D27"
)
sctSNEbwCol
(
sc10x.Epi
,
i
=
"Epi.dws.sc"
,
file
=
"Epi"
,
files
=
"D27"
)
sctSNEbwCol
(
sc10x.St
,
i
=
"St.dws.sc"
,
file
=
"St"
,
files
=
"D27"
)
for
(
g
in
c
(
"Epi"
,
"St"
,
"Unknown"
)){
sctSNEHighlight
(
sc10x
,
i
=
"Lin"
,
g
=
g
,
file
=
"D27"
)
}
for
(
g
in
c
(
"BE"
,
"LE"
,
"OE_SCGB"
,
"OE_KRT13"
)){
sctSNEHighlight
(
sc10x
,
i
=
"Merge_Epi.dws.sc_St.dws.sc"
,
g
=
g
,
file
=
"D27"
)
sctSNEHighlight
(
sc10x.Epi
,
i
=
"Epi.dws.c"
,
g
=
g
,
file
=
"D27"
)
}
sctSNEHighlight
(
sc10x.Epi.NE
,
i
=
"NE"
,
g
=
"NE"
,
file
=
"D27"
)
for
(
g
in
c
(
"Fib"
,
"SM"
,
"Endo"
,
"Leu"
)){
sctSNEHighlight
(
sc10x
,
i
=
"Merge_Epi.dws.sc_St.dws.sc"
,
g
=
g
,
file
=
"D27"
)
sctSNEHighlight
(
sc10x.St
,
i
=
"St.dws.sc"
,
g
=
g
,
file
=
"D27"
)
}
for
(
g
in
c
(
"D27PrTzF_BE"
,
"D27PrTzF_LE"
,
"D27PrTzF_OE"
,
"D27PrTzF_Edn"
,
"D27PrTzF_StPDPNn"
,
"D27PrTzF_StPDPNp"
)){
sctSNEHighlight
(
sc10x
,
i
=
"samples"
,
g
=
g
,
file
=
"D27"
)
}
sctSNEHighlight
(
sc10x
,
i
=
"msamples"
,
g
=
c
(
"St"
),
file
=
"D27"
)
rm
(
i
)
rm
(
g
)
postscript
(
paste0
(
"./analysis/diy/Feature.eps"
))
FeaturePlot
(
sc10x
,
features.plot
=
c
(
"PECAM1"
,
"CD200"
,
"PDPN"
,
"EPCAM"
,
"DPP4"
,
"PSCA"
,
"VIM"
,
"KRT5"
,
"KLK3"
),
cols.use
=
c
(
"grey"
,
"darkred"
),
reduction.use
=
"tsne"
)
dev.off
()
save
(
list
=
ls
(
pattern
=
"sc10x.Stress"
),
file
=
"./analysis/sc10x.Stress.Rda"
)
rm
(
list
=
ls
(
pattern
=
"sc10x.Stress"
))
save
(
list
=
ls
(
pattern
=
"sc10x.Epi"
),
file
=
"./analysis/sc10x.Epi.Rda"
)
rm
(
list
=
ls
(
pattern
=
"^sc10x.Epi"
))
save
(
list
=
ls
(
pattern
=
"sc10x.St"
),
file
=
"./analysis/sc10x.St.Rda"
)
rm
(
list
=
ls
(
pattern
=
"sc10x.St"
))
save
(
list
=
ls
(
pattern
=
"^sc10x"
),
file
=
"./analysis/sc10x.Rda"
)
rm
(
list
=
ls
(
pattern
=
"^sc10x"
))
save.image
(
file
=
"./analysis/Data.RData"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment