#!/usr/bin/env nextflow // ######## #### ###### ######## // ## ## ## ## ## ## // ## ## ## ## ## // ######## ## ## ###### // ## ## ## ## ## // ## ## ## ## ## ## // ######## #### ###### ## // Define input variables params.deriva = "${baseDir}/../test_data/auth/credential.json" params.bdbag = "${baseDir}/../test_data/auth/cookies.txt" //params.repRID = "16-1ZX4" params.repRID = "Q-Y5F6" params.source = "dev" params.refMoVersion = "38.p6.vM25" params.refHuVersion = "38.p13.v36" params.refERCCVersion = "92" params.outDir = "${baseDir}/../output" params.upload = false params.email = "" params.track = false // Define override input variable params.refSource = "biohpc" params.inputBagForce = "" params.fastqsForce = "" params.speciesForce = "" params.strandedForce = "" params.spikeForce = "" // Define tracking input variables params.ci = false params.dev = true // Parse input variables deriva = Channel .fromPath(params.deriva) .ifEmpty { exit 1, "deriva credential file not found: ${params.deriva}" } deriva.into { deriva_getBag deriva_getRefInfer deriva_getRef deriva_uploadInputBag deriva_uploadExecutionRun deriva_uploadQC deriva_uploadQC_fail deriva_uploadProcessedFile deriva_uploadOutputBag deriva_finalizeExecutionRun deriva_failPreExecutionRun deriva_failExecutionRun } bdbag = Channel .fromPath(params.bdbag) .ifEmpty { exit 1, "deriva cookie file for bdbag not found: ${params.bdbag}" } repRID = params.repRID refMoVersion = params.refMoVersion refHuVersion = params.refHuVersion refERCCVersion = params.refERCCVersion outDir = params.outDir logsDir = "${outDir}/Logs" upload = params.upload inputBagForce = params.inputBagForce fastqsForce = params.fastqsForce speciesForce = params.speciesForce strandedForce = params.strandedForce spikeForce = params.spikeForce email = params.email // Define fixed files and variables replicateExportConfig = Channel.fromPath("${baseDir}/conf/Replicate_For_Input_Bag.json") executionRunExportConfig = Channel.fromPath("${baseDir}/conf/Execution_Run_For_Output_Bag.json") if (params.source == "dev") { source = "dev.gudmap.org" } else if (params.source == "staging") { source = "staging.gudmap.org" } else if (params.source == "production") { source = "www.gudmap.org" } if (params.refSource == "biohpc") { referenceBase = "/project/BICF/BICF_Core/shared/gudmap/references/new" } else if (params.refSource == "datahub") { referenceBase = "www.gudmap.org" } referenceInfer = Channel.fromList(["ERCC","GRCh","GRCm"]) multiqcConfig = Channel.fromPath("${baseDir}/conf/multiqc_config.yaml") bicfLogo = Channel.fromPath("${baseDir}/../docs/bicf_logo.png") softwareReferences = Channel.fromPath("${baseDir}/../docs/software_references_mqc.yaml") softwareVersions = Channel.fromPath("${baseDir}/../docs/software_versions_mqc.yaml") // Define script files script_bdbagFetch = Channel.fromPath("${baseDir}/scripts/bdbag_fetch.sh") script_parseMeta = Channel.fromPath("${baseDir}/scripts/parse_meta.py") script_inferMeta = Channel.fromPath("${baseDir}/scripts/infer_meta.sh") script_refDataInfer = Channel.fromPath("${baseDir}/scripts/extract_ref_data.py") script_refData = Channel.fromPath("${baseDir}/scripts/extract_ref_data.py") script_calculateTPM = Channel.fromPath("${baseDir}/scripts/calculateTPM.R") script_convertGeneSymbols = Channel.fromPath("${baseDir}/scripts/convertGeneSymbols.R") script_tinHist = Channel.fromPath("${baseDir}/scripts/tin_hist.py") script_uploadInputBag = Channel.fromPath("${baseDir}/scripts/upload_input_bag.py") script_uploadExecutionRun_uploadExecutionRun = Channel.fromPath("${baseDir}/scripts/upload_execution_run.py") script_uploadExecutionRun_finalizeExecutionRun = Channel.fromPath("${baseDir}/scripts/upload_execution_run.py") script_uploadExecutionRun_failPreExecutionRun = Channel.fromPath("${baseDir}/scripts/upload_execution_run.py") script_uploadExecutionRun_failExecutionRun = Channel.fromPath("${baseDir}/scripts/upload_execution_run.py") script_uploadQC = Channel.fromPath("${baseDir}/scripts/upload_qc.py") script_uploadQC_fail = Channel.fromPath("${baseDir}/scripts/upload_qc.py") script_uploadOutputBag = Channel.fromPath("${baseDir}/scripts/upload_output_bag.py") script_deleteEntry_uploadQC = Channel.fromPath("${baseDir}/scripts/delete_entry.py") script_deleteEntry_uploadQC_fail = Channel.fromPath("${baseDir}/scripts/delete_entry.py") script_deleteEntry_uploadProcessedFile = Channel.fromPath("${baseDir}/scripts/delete_entry.py") /* * trackStart: track start of pipeline */ process trackStart { container 'docker://gudmaprbk/gudmap-rbk_base:1.0.0' script: """ hostname ulimit -a curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "sessionId": "${workflow.sessionId}", \ "pipeline": "gudmap.rbk_rnaseq", \ "start": "${workflow.start}", \ "repRID": "${repRID}", \ "astrocyte": false, \ "status": "started", \ "nextflowVersion": "${workflow.nextflow.version}", \ "pipelineVersion": "${workflow.manifest.version}", \ "ci": ${params.ci}, \ "dev": ${params.dev} \ }' \ "https://xku43pcwnf.execute-api.us-east-1.amazonaws.com/ProdDeploy/pipeline-tracking" if [ ${params.track} == true ] then curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "ID": "${workflow.sessionId}", \ "repRID": "${repRID}", \ "PipelineVersion": "${workflow.manifest.version}", \ "Server": "${params.source}", \ "Queued": "NA", \ "CheckedOut": "NA", \ "Started": "${workflow.start}" \ }' \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/track" fi """ } log.info """\ ==================================== BICF RNA-seq Pipeline for GUDMAP/RBK ==================================== Replicate RID : ${params.repRID} Source Server : ${params.source} Mouse Reference Version: ${params.refMoVersion} Human Reference Version: ${params.refHuVersion} ERCC Reference Version : ${params.refERCCVersion} Reference source : ${params.refSource} Output Directory : ${params.outDir} Upload : ${upload} Track : ${params.track} ------------------------------------ Nextflow Version : ${workflow.nextflow.version} Pipeline Version : ${workflow.manifest.version} Session ID : ${workflow.sessionId} ------------------------------------ CI : ${params.ci} Development : ${params.dev} ------------------------------------ """ /* * getBag: download input bag */ process getBag { tag "${repRID}" publishDir "${outDir}/inputBag", mode: 'copy', pattern: "*_inputBag_*.zip" input: path credential, stageAs: "credential.json" from deriva_getBag path replicateExportConfig output: path ("*.zip") into bag when: inputBagForce == "" script: """ hostname > ${repRID}.getBag.log ulimit -a >> ${repRID}.getBag.log # link credential file for authentication echo -e "LOG: linking deriva credentials" >> ${repRID}.getBag.log mkdir -p ~/.deriva ln -sf `readlink -e credential.json` ~/.deriva/credential.json echo -e "LOG: linked" >> ${repRID}.getBag.log # deriva-download replicate RID echo -e "LOG: fetching bag for ${repRID} in GUDMAP" >> ${repRID}.getBag.log deriva-download-cli ${source} --catalog 2 ${replicateExportConfig} . rid=${repRID} echo -e "LOG: fetched" >> ${repRID}.getBag.log name=\$(ls *.zip) name=\$(basename \${name} | cut -d "." -f1) yr=\$(date +'%Y') mn=\$(date +'%m') dy=\$(date +'%d') mv \${name}.zip \${name}_\${yr}\${mn}\${dy}.zip """ } // Set inputBag to downloaded or forced input if (inputBagForce != "") { inputBag = Channel .fromPath(inputBagForce) .ifEmpty { exit 1, "override inputBag file not found: ${inputBagForce}" } } else { inputBag = bag } inputBag.into { inputBag_getData inputBag_uploadInputBag } /* * getData: fetch replicate files from consortium with downloaded bdbag.zip */ process getData { tag "${repRID}" input: path script_bdbagFetch path cookies, stageAs: "deriva-cookies.txt" from bdbag path inputBag from inputBag_getData output: path ("*.R{1,2}.fastq.gz") into fastqs path ("**/File.csv") into fileMeta path ("**/Experiment Settings.csv") into experimentSettingsMeta path ("**/Experiment.csv") into experimentMeta path "fastqCount.csv" into fastqCount_fl script: """ hostname > ${repRID}.getData.log ulimit -a >> ${repRID}.getData.log # link deriva cookie for authentication echo -e "LOG: linking deriva cookie" >> ${repRID}.getData.log mkdir -p ~/.bdbag ln -sf `readlink -e deriva-cookies.txt` ~/.bdbag/deriva-cookies.txt echo -e "LOG: linked" >> ${repRID}.getData.log # get bag basename replicate=\$(basename "${inputBag}") echo -e "LOG: bag replicate name \${replicate}" >> ${repRID}.getData.log # unzip bag echo -e "LOG: unzipping replicate bag" >> ${repRID}.getData.log unzip ${inputBag} echo -e "LOG: unzipped" >> ${repRID}.getData.log # bag fetch fastq's only and rename by repRID echo -e "LOG: fetching replicate bdbag" >> ${repRID}.getData.log sh ${script_bdbagFetch} \${replicate::-13} ${repRID} echo -e "LOG: fetched" >> ${repRID}.getData.log fastqCount=\$(ls *.fastq.gz | wc -l) if [ "\${fastqCount}" == "0" ] then touch dummy.R1.fastq.gz fi echo "\${fastqCount}" > fastqCount.csv """ } // Split fastq count into channel fastqCount = Channel.create() fastqCount_fl.splitCsv(sep: ",", header: false).separate( fastqCount ) // Set raw fastq to downloaded or forced input and replicate them for multiple process inputs if (fastqsForce != "") { Channel .fromPath(fastqsForce) .ifEmpty { exit 1, "override inputBag file not found: ${fastqsForce}" } .collect().into { fastqs_parseMetadata fastqs_fastqc } } else { fastqs.collect().into { fastqs_parseMetadata fastqs_fastqc } } /* * parseMetadata: parses metadata to extract experiment parameters */ process parseMetadata { tag "${repRID}" input: path script_parseMeta path file from fileMeta path experimentSettings, stageAs: "ExperimentSettings.csv" from experimentSettingsMeta path experiment from experimentMeta path (fastq) from fastqs_parseMetadata.collect() val fastqCount output: path "design.csv" into metadata_fl path "fastqError.csv" into fastqError_fl script: """ hostname > ${repRID}.parseMetadata.log ulimit -a >> ${repRID}.parseMetadata.log # check replicate RID metadata rep=\$(python3 ${script_parseMeta} -r ${repRID} -m "${file}" -p repRID) echo -e "LOG: replicate RID metadata parsed: \${rep}" >> ${repRID}.parseMetadata.log # get experiment RID metadata exp=\$(python3 ${script_parseMeta} -r ${repRID} -m "${file}" -p expRID) echo -e "LOG: experiment RID metadata parsed: \${exp}" >> ${repRID}.parseMetadata.log # get study RID metadata study=\$(python3 ${script_parseMeta} -r ${repRID} -m "${file}" -p studyRID) echo -e "LOG: study RID metadata parsed: \${study}" >> ${repRID}.parseMetadata.log # get endedness metadata endsRaw=\$(python3 ${script_parseMeta} -r ${repRID} -m "${experimentSettings}" -p endsMeta) echo -e "LOG: endedness metadata parsed: \${endsRaw}" >> ${repRID}.parseMetadata.log if [ "\${endsRaw}" == "Single End" ] then endsMeta="se" elif [ "\${endsRaw}" == "Paired End" ] then endsMeta="pe" elif [ "\${endsRaw}" == "Single Read" ] # "Single Read" depreciated as of Jan 2021, this option is present for backwards compatibility then endsMeta="se" elif [ "\${endsRaw}" == "nan" ] then endsRaw="_No value_" endsMeta="NA" fi # ganually get endness if [ "${fastqCount}" == "1" ] then endsManual="se" else endsManual="pe" fi echo -e "LOG: endedness manually detected: ${fastqCount}" >> ${repRID}.parseMetadata.log # get strandedness metadata stranded=\$(python3 ${script_parseMeta} -r ${repRID} -m "${experimentSettings}" -p stranded) echo -e "LOG: strandedness metadata parsed: \${stranded}" >> ${repRID}.parseMetadata.log if [ "\${stranded}" == "nan" ] then stranded="_No value_" fi # get spike-in metadata spike=\$(python3 ${script_parseMeta} -r ${repRID} -m "${experimentSettings}" -p spike) echo -e "LOG: spike-in metadata parsed: \${spike}" >> ${repRID}.parseMetadata.log if [ "\${spike}" == "nan" ] then spike="_No value_" fi if [ "\${spike}" == "f" ] then spike="false" elif [ "\${spike}" == "t" ] then spike="true" elif [ "\${spike}" == "no" ] # "yes"/"no" depreciated as of Jan 2021, this option is present for backwards compatibility then spike="false" elif [ "\${spike}" == "yes" ] # "yes"/"no" depreciated as of Jan 2021, this option is present for backwards compatibility then spike="true" elif [ "\${spike}" == "nan" ] then endsRaw="_No value_" endsMeta="NA" fi # get species metadata species=\$(python3 ${script_parseMeta} -r ${repRID} -m "${experiment}" -p species) echo -e "LOG: species metadata parsed: \${species}" >> ${repRID}.parseMetadata.log if [ "\${species}" == "nan" ] then species="_No value_" fi # get read length metadata readLength=\$(python3 ${script_parseMeta} -r ${repRID} -m "${experimentSettings}" -p readLength) if [ "\${readLength}" = "nan" ] then readLength="NA" fi echo -e "LOG: read length metadata parsed: \${readLength}" >> ${repRID}.parseMetadata.log # check not incorrect number of fastqs fastqCountError=false fastqCountError_details="" if [ "${fastqCount}" -gt "2" ] then fastqCountError=true fastqCountError_details="**Too many fastqs detected (>2)**" elif [ "${fastqCount}" -eq "0" ] then fastqCountError=true fastqCountError_details="**No valid fastqs detected \\(may not match {_.}R{12}.fastq.gz convention\\)**" elif [ "\${endsMeta}" == "se" ] && [ "${fastqCount}" -ne "1" ] then fastqCountError=true fastqCountError_details="**Number of fastqs detected does not match submitted endness**" elif [ "\${endsMeta}" == "pe" ] && [ "${fastqCount}" -ne "2" ] then fastqCountError=true fastqCountError_details="**Number of fastqs detected does not match submitted endness**" fi # check read counts match for fastqs fastqReadError=false fastqReadError_details="" if [ "\${endsManual}" == "pe" ] then r1Count=\$(zcat ${fastq[0]} | wc -l) r2Count=\$(zcat ${fastq[1]} | wc -l) if [ "\${r1Count}" -ne "\${r2Count}" ] then fastqReadError=true fastqReadError_details="**Number of reads do not match for R1 and R2:** there may be a trunkation or mismatch of fastq files" fi fi # save design file echo "\${endsMeta},\${endsRaw},\${endsManual},\${stranded},\${spike},\${species},\${readLength},\${exp},\${study}" > design.csv # save fastq error file echo "\${fastqCountError},\${fastqCountError_details},\${fastqReadError},\${fastqReadError_details}" > fastqError.csv """ } // Split metadata into separate channels endsMeta = Channel.create() endsRaw = Channel.create() endsManual = Channel.create() strandedMeta = Channel.create() spikeMeta = Channel.create() speciesMeta = Channel.create() readLengthMeta = Channel.create() expRID = Channel.create() studyRID = Channel.create() metadata_fl.splitCsv(sep: ",", header: false).separate( endsMeta, endsRaw, endsManual, strandedMeta, spikeMeta, speciesMeta, readLengthMeta, expRID, studyRID ) // Replicate metadata for multiple process inputs endsMeta.into { endsMeta_checkMetadata endsMeta_aggrQC endsMeta_failExecutionRun } endsManual.into { endsManual_trimData endsManual_downsampleData endsManual_alignSampleData endsManual_aggrQC } strandedMeta.into { strandedMeta_checkMetadata strandedMeta_aggrQC strandedMeta_failExecutionRun } spikeMeta.into { spikeMeta_checkMetadata spikeMeta_aggrQC spikeMeta_failPreExecutionRun spikeMeta_failExecutionRun } speciesMeta.into { speciesMeta_checkMetadata speciesMeta_aggrQC speciesMeta_failPreExecutionRun speciesMeta_failExecutionRun } studyRID.into { studyRID_aggrQC studyRID_uploadInputBag studyRID_uploadProcessedFile studyRID_uploadOutputBag } expRID.into { expRID_aggrQC expRID_uploadProcessedFile } // Split fastq count error into separate channel fastqCountError = Channel.create() fastqCountError_details = Channel.create() fastqReadError = Channel.create() fastqReadError_details = Channel.create() fastqError_fl.splitCsv(sep: ",", header: false).separate( fastqCountError, fastqCountError_details, fastqReadError, fastqReadError_details ) // Replicate errors for multiple process inputs fastqCountError.into { fastqCountError_fastqc fastqCountError_trimData fastqCountError_getRefInfer fastqCountError_downsampleData fastqCountError_alignSampleData fastqCountError_inferMetadata fastqCountError_checkMetadata fastqCountError_uploadExecutionRun fastqCountError_getRef fastqCountError_alignData fastqCountError_dedupData fastqCountError_makeBigWig fastqCountError_countData fastqCountError_dataQC fastqCountError_aggrQC fastqCountError_uploadQC fastqCountError_uploadQC_fail fastqCountError_uploadProcessedFile fastqCountError_uploadOutputBag fastqCountError_failPreExecutionRun_fastq } fastqReadError.into { fastqReadError_fastqc fastqReadError_trimData fastqReadError_getRefInfer fastqReadError_downsampleData fastqReadError_alignSampleData fastqReadError_inferMetadata fastqReadError_checkMetadata fastqReadError_uploadExecutionRun fastqReadError_getRef fastqReadError_alignData fastqReadError_dedupData fastqReadError_makeBigWig fastqReadError_countData fastqReadError_dataQC fastqReadError_aggrQC fastqReadError_uploadQC fastqReadError_uploadQC_fail fastqReadError_uploadProcessedFile fastqReadError_uploadOutputBag fastqReadError_failPreExecutionRun_fastq } /* *fastqc: run fastqc on untrimmed fastq's */ process fastqc { tag "${repRID}" input: path (fastq) from fastqs_fastqc.collect() val fastqCountError_fastqc val fastqReadError_fastqc output: path ("*.R{1,2}.fastq.gz", includeInputs:true) into fastqs_trimData path ("*_fastqc.zip") into fastqc path ("rawReads.csv") into rawReadsInfer_fl path "fastqFileError.csv" into fastqFileError_fl when: fastqCountError_fastqc == 'false' && fastqReadError_fastqc == 'false' script: """ hostname > ${repRID}.fastqc.log ulimit -a >> ${repRID}.fastqc.log # run fastqc echo -e "LOG: running fastq on raw fastqs" >> ${repRID}.fastqc.log fastqc *.fastq.gz -o . &> fastqc.out || true fastqcErrorOut=\$(cat fastqc.out | grep -c 'Failed to process file') || fastqcErrorOut=0 fastqFileError=false fastqFileError_details="" if [ "\${fastqcErrorOut}" -ne "0" ] then fastqFileError=true fastqFileError_details="**There is an error with the structure of the fastq**" echo -e "LOG: There is an error with the structure of the fastq" >> ${repRID}.fastqc.log touch dummy_fastqc.zip else echo -e "LOG: The structure of the fastq is correct" >> ${repRID}.fastqc.log fi # count raw reads zcat *.R1.fastq.gz | echo \$((`wc -l`/4)) > rawReads.csv # save fastq error file echo "\${fastqFileError},\${fastqFileError_details}" > fastqFileError.csv """ } // Extract number of raw reads metadata into channel rawReadsInfer = Channel.create() rawReadsInfer_fl.splitCsv(sep: ",", header: false).separate( rawReadsInfer ) // Replicate inferred raw reads for multiple process inputs rawReadsInfer.into { rawReadsInfer_aggrQC rawReadsInfer_uploadQC } // Split fastq count error into separate channel fastqFileError = Channel.create() fastqFileError_details = Channel.create() fastqFileError_fl.splitCsv(sep: ",", header: false).separate( fastqFileError, fastqFileError_details ) // Replicate errors for multiple process inputs fastqFileError.into { fastqFileError_fastqc fastqFileError_trimData fastqFileError_getRefInfer fastqFileError_downsampleData fastqFileError_alignSampleData fastqFileError_inferMetadata fastqFileError_checkMetadata fastqFileError_uploadExecutionRun fastqFileError_getRef fastqFileError_alignData fastqFileError_dedupData fastqFileError_makeBigWig fastqFileError_countData fastqFileError_dataQC fastqFileError_aggrQC fastqFileError_uploadQC fastqFileError_uploadQC_fail fastqFileError_uploadProcessedFile fastqFileError_uploadOutputBag fastqFileError_failPreExecutionRun_fastqFile } /* * trimData: trims any adapter or non-host sequences from the data */ process trimData { tag "${repRID}" input: path (fastq) from fastqs_trimData val ends from endsManual_trimData val fastqCountError_trimData val fastqReadError_trimData val fastqFileError_trimData output: path ("*.fq.gz") into fastqsTrim path ("*_trimming_report.txt") into trimQC path ("readLength.csv") into readLengthInfer_fl when: fastqCountError_trimData == "false" fastqReadError_trimData == "false" fastqFileError_trimData == "false" script: """ hostname > ${repRID}.trimData.log ulimit -a >> ${repRID}.trimData.log # trim fastq's using trim_galore and extract median read length echo -e "LOG: trimming ${ends}" >> ${repRID}.trimData.log if [ "${ends}" == "se" ] then trim_galore --gzip -q 25 --length 35 --basename ${repRID} ${fastq[0]} readLength=\$(zcat *_trimmed.fq.gz | awk '{if(NR%4==2) print length(\$1)}' | sort -n | awk '{a[NR]=\$0}END{print(NR%2==1)?a[int(NR/2)+1]:(a[NR/2]+a[NR/2+1])/2}') elif [ "${ends}" == "pe" ] then trim_galore --gzip -q 25 --length 35 --paired --basename ${repRID} ${fastq[0]} ${fastq[1]} readLength=\$(zcat *_1.fq.gz | awk '{if(NR%4==2) print length(\$1)}' | sort -n | awk '{a[NR]=\$0}END{print(NR%2==1)?a[int(NR/2)+1]:(a[NR/2]+a[NR/2+1])/2}') fi echo -e "LOG: trimmed" >> ${repRID}.trimData.log echo -e "LOG: average trimmed read length: \${readLength}" >> ${repRID}.trimData.log # save read length file echo "\${readLength}" > readLength.csv """ } // Extract calculated read length metadata into channel readLengthInfer = Channel.create() readLengthInfer_fl.splitCsv(sep: ",", header: false).separate( readLengthInfer ) // Replicate inferred read length for multiple process inputs readLengthInfer.into { readLengthInfer_aggrQC readLengthInfer_uploadQC } // Replicate trimmed fastq's for multiple process inputs fastqsTrim.into { fastqsTrim_alignData fastqsTrim_downsampleData } // Combine inputs of getRefInfer getRefInferInput = referenceInfer.combine(deriva_getRefInfer.combine(script_refDataInfer.combine(fastqCountError_getRefInfer.combine(fastqReadError_getRefInfer.combine(fastqFileError_getRefInfer))))) /* * getRefInfer: dowloads appropriate reference for metadata inference */ process getRefInfer { tag "${refName}" input: tuple val (refName), path (credential, stageAs: "credential.json"), path (script_refDataInfer), val (fastqCountError), val (fastqReadError), val (fastqFileError) from getRefInferInput output: tuple val (refName), path ("hisat2", type: 'dir'), path ("*.fna"), path ("*.gtf") into refInfer path ("${refName}", type: 'dir') into bedInfer when: fastqCountError == "false" fastqReadError == "false" fastqFileError == "false" script: """ hostname > ${repRID}.${refName}.getRefInfer.log ulimit -a >> ${repRID}.${refName}.getRefInfer.log # link credential file for authentication echo -e "LOG: linking deriva credentials" >> ${repRID}.${refName}.getRefInfer.log mkdir -p ~/.deriva ln -sf `readlink -e credential.json` ~/.deriva/credential.json echo -e "LOG: linked" >> ${repRID}.${refName}.getRefInfer.log # set the reference name if [ "${refName}" == "ERCC" ] then references=\$(echo ${referenceBase}/ERCC${refERCCVersion}) elif [ "${refName}" == "GRCm" ] then references=\$(echo ${referenceBase}/GRCm${refMoVersion}) elif [ '${refName}' == "GRCh" ] then references=\$(echo ${referenceBase}/GRCh${refHuVersion}) else echo -e "LOG: ERROR - References could not be set!\nReference found: ${referenceBase}" >> ${repRID}.${refName}.getRefInfer.log exit 1 fi # retreive appropriate reference appropriate location echo -e "LOG: fetching ${refName} reference files from ${referenceBase}" >> ${repRID}.${refName}.getRefInfer.log if [ "${referenceBase}" == "/project/BICF/BICF_Core/shared/gudmap/references/new" ] then unzip \${references}.zip mv \$(basename \${references})/data/* . elif [ "${params.refSource}" == "datahub" ] then GRCv=\$(echo \${references} | grep -o ${refName}.* | cut -d '.' -f1) GRCp=\$(echo \${references} | grep -o ${refName}.* | cut -d '.' -f2) GENCODE=\$(echo \${references} | grep -o ${refName}.* | cut -d '.' -f3) if [ "${refName}" != "ERCC" ] then query=\$(echo 'https://${referenceBase}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Reference_Version='\${GRCv}'.'\${GRCp}'/Annotation_Version=GENCODE%20'\${GENCODE}'/Used_Spike_Ins=false') else query=\$(echo 'https://${referenceBase}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Reference_Version='${refName}${refERCCVersion}'/Annotation_Version='${refName}${refERCCVersion}'/Used_Spike_Ins=false') fi curl --request GET \${query} > refQuery.json refURL=\$(python ${script_refDataInfer} --returnParam URL) loc=\$(dirname \${refURL}) fName=\$(python ${script_refDataInfer} --returnParam fName) fName=\${fName%.*} if [ "\${loc}" = "/hatrac/*" ]; then echo "LOG: Reference not present in hatrac"; exit 1; fi filename=\$(echo \$(basename \${refURL}) | grep -oP '.*(?=:)') deriva-hatrac-cli --host ${referenceBase} get \${refURL} unzip \$(basename \${refURL}) mv \${fName}/data/* . fi mv ./annotation/genome.gtf . mv ./sequence/genome.fna . mkdir ${refName} if [ "${refName}" != "ERCC" ] then mv ./annotation/genome.bed ./${refName} fi echo -e "LOG: fetched" >> ${repRID}.${refName}.getRefInfer.log """ } /* * downsampleData: downsample fastq's for metadata inference */ process downsampleData { tag "${repRID}" input: path fastq from fastqsTrim_downsampleData val ends from endsManual_downsampleData val fastqCountError_downsampleData val fastqReadError_downsampleData val fastqFileError_downsampleData output: path ("sampled.1.fq") into fastqs1Sample path ("sampled.2.fq") into fastqs2Sample when: fastqCountError_downsampleData == "false" fastqReadError_downsampleData == "false" fastqFileError_downsampleData == "false" script: """ hostname > ${repRID}.downsampleData.log ulimit -a >> ${repRID}.downsampleData.log if [ "${ends}" == "se" ] then echo -e "LOG: downsampling SE trimmed fastq" >> ${repRID}.downsampleData.log seqtk sample -s100 *trimmed.fq.gz 100000 1> sampled.1.fq touch sampled.2.fq elif [ "${ends}" == "pe" ] then echo -e "LOG: downsampling R1 of PE trimmed fastq" >> ${repRID}.downsampleData.log seqtk sample -s100 *1.fq.gz 1000000 1> sampled.1.fq echo -e "LOG: downsampling R2 of PE trimmed fastq" >> ${repRID}.downsampleData.log seqtk sample -s100 *2.fq.gz 1000000 1> sampled.2.fq fi echo -e "LOG: downsampled" >> ${repRID}.downsampleData.log """ } // Replicate the dowsampled fastq's and attatched to the references inferInput = endsManual_alignSampleData.combine(refInfer.combine(fastqs1Sample.collect().combine(fastqs2Sample.collect().combine(fastqCountError_alignSampleData.combine(fastqReadError_alignSampleData.combine(fastqFileError_alignSampleData)))))) /* * alignSampleData: aligns the downsampled reads to a reference database */ process alignSampleData { tag "${ref}" input: tuple val (ends), val (ref), path (hisat2), path (fna), path (gtf), path (fastq1), path (fastq2), val (fastqCountError), val (fastqReadError), val (fastqFileError) from inferInput output: path ("${ref}.sampled.sorted.bam") into sampleBam path ("${ref}.sampled.sorted.bam.bai") into sampleBai path ("${ref}.alignSampleSummary.txt") into alignSampleQC when: fastqCountError == "false" fastqReadError == "false" fastqFileError == "false" script: """ hostname > ${repRID}.${ref}.alignSampleData.log ulimit -a >> ${repRID}.${ref}.alignSampleData.log # align the reads with Hisat2 echo -e "LOG: aligning ${ends}" >> ${repRID}.${ref}.alignSampleData.log if [ "${ends}" == "se" ] then hisat2 -p `nproc` --add-chrname -S ${ref}.sampled.sam -x hisat2/genome -U ${fastq1} --summary-file ${ref}.alignSampleSummary.txt --new-summary elif [ "${ends}" == "pe" ] then hisat2 -p `nproc` --add-chrname -S ${ref}.sampled.sam -x hisat2/genome --no-mixed --no-discordant -1 ${fastq1} -2 ${fastq2} --summary-file ${ref}.alignSampleSummary.txt --new-summary fi echo -e "LOG: aliged" >> ${repRID}.${ref}.alignSampleData.log # convert the output sam file to a sorted bam file using Samtools echo -e "LOG: converting from sam to bam" >> ${repRID}.${ref}.alignSampleData.log samtools view -1 -@ `nproc` -F 4 -F 8 -F 256 -o ${ref}.sampled.bam ${ref}.sampled.sam # sort the bam file using Samtools echo -e "LOG: sorting the bam file" >> ${repRID}.${ref}.alignSampleData.log proc=\$(expr `nproc` - 1) mem=\$(vmstat -s -S K | grep 'total memory' | grep -o '[0-9]*') mem=\$(expr \${mem} / \${proc} \\* 85 / 100) samtools sort -@ \${proc} -m \${mem}K -O BAM -o ${ref}.sampled.sorted.bam ${ref}.sampled.bam # index the sorted bam using Samtools echo -e "LOG: indexing sorted bam file" >> ${repRID}.${ref}.alignSampleData.log samtools index -@ `nproc` -b ${ref}.sampled.sorted.bam ${ref}.sampled.sorted.bam.bai """ } alignSampleQC.into { alignSampleQC_inferMetadata alignSampleQC_aggrQC } process inferMetadata { tag "${repRID}" input: path script_inferMeta path beds from bedInfer.collect() path bam from sampleBam.collect() path bai from sampleBai.collect() path alignSummary from alignSampleQC_inferMetadata.collect() val strandedForce val spikeForce val fastqCountError_inferMetadata val fastqReadError_inferMetadata val fastqFileError_inferMetadata output: path "infer.csv" into inferMetadata_fl path "${repRID}.infer_experiment.txt" into inferExperiment path "speciesError.csv" into speciesError_fl when: fastqCountError_inferMetadata == "false" fastqReadError_inferMetadata == "false" fastqFileError_inferMetadata == "false" script: """ hostname > ${repRID}.inferMetadata.log ulimit -a >> ${repRID}.inferMetadata.log # collect alignment rates (round down to integers) align_ercc=\$(echo \$(grep "Overall alignment rate" ERCC.alignSampleSummary.txt | cut -f2 -d ':' | cut -f2 -d ' ' | tr -d '%')) align_ercc=\$(echo \${align_ercc%.*}) echo -e "LOG: alignment rate to ERCC: \${align_ercc}" >> ${repRID}.inferMetadata.log align_hu=\$(echo \$(grep "Overall alignment rate" GRCh.alignSampleSummary.txt | cut -f2 -d ':' | cut -f2 -d ' ' | tr -d '%')) align_hu=\$(echo \${align_hu%.*}) echo -e "LOG: alignment rate to GRCh: \${align_hu}" >> ${repRID}.inferMetadata.log align_mo=\$(echo \$(grep "Overall alignment rate" GRCm.alignSampleSummary.txt | cut -f2 -d ':' | cut -f2 -d ' ' | tr -d '%')) align_mo=\$(echo \${align_mo%.*}) echo -e "LOG: alignment rate to GRCm: \${align_mo}" >> ${repRID}.inferMetadata.log # determine spike-in if [ 1 -eq \$(echo \$(expr \${align_ercc} ">=" 10)) ] then spike="true" else spike="false" fi echo -e "LOG: inference of strandedness results is: \${spike}" >> ${repRID}.inferMetadata.log if [ "${spikeForce}" != "" ] then spike=${spikeForce} echo -e "LOG: spike-in metadata forced: \${spike}" >> ${repRID}.parseMetadata.log fi speciesError=false speciesError_details="" # determine species if [ 1 -eq \$(echo \$(expr \${align_hu} ">=" 40)) ] && [ 1 -eq \$(echo \$(expr \${align_mo} "<" 40)) ] then species="Homo sapiens" bam="GRCh.sampled.sorted.bam" bed="./GRCh/genome.bed" echo -e "LOG: inference of species results in: \${species}" >> ${repRID}.inferMetadata.log elif [ 1 -eq \$(echo \$(expr \${align_mo} ">=" 40)) ] && [ 1 -eq \$(echo \$(expr \${align_hu} "<" 40)) ] then species="Mus musculus" bam="GRCm.sampled.sorted.bam" bed="./GRCm/genome.bed" echo -e "LOG: inference of species results in: \${species}" >> ${repRID}.inferMetadata.log else echo -e "LOG: ERROR - inference of species returns an ambiguous result: hu=\${align_hu} mo=\${align_mo}" >> ${repRID}.inferMetadata.log if [ "${speciesForce}" == "" ] then speciesError=true speciesError_details="**Inference of species returns an ambiguous result:** Percent aligned to human = \${align_hu} and percent aligned to mouse = \${align_mo}" fi fi if [ "${speciesForce}" != "" ] then speciesError=false echo -e "LOG: species overridden to: ${speciesForce}" species="${speciesForce}" if [ "${speciesForce}" == "Homo sapiens" ] then bam="GRCh.sampled.sorted.bam" bed="./GRCh/genome.bed" elif [ "${speciesForce}" == "Mus musculus" ] then bam="GRCm.sampled.sorted.bam" bed="./GRCm/genome.bed" fi fi if [ "\${speciesError}" == false ] then # infer experimental setting from dedup bam echo -e "LOG: infer experimental setting from dedup bam" >> ${repRID}.inferMetadata.log infer_experiment.py -r "\${bed}" -i "\${bam}" 1>> ${repRID}.infer_experiment.txt echo -e "LOG: inferred" >> ${repRID}.inferMetadata.log ended=`bash ${script_inferMeta} endness ${repRID}.infer_experiment.txt` fail=`bash ${script_inferMeta} fail ${repRID}.infer_experiment.txt` if [ \${ended} == "PairEnd" ] then ends="pe" percentF=`bash ${script_inferMeta} pef ${repRID}.infer_experiment.txt` percentR=`bash ${script_inferMeta} per ${repRID}.infer_experiment.txt` elif [ \${ended} == "SingleEnd" ] then ends="se" percentF=`bash ${script_inferMeta} sef ${repRID}.infer_experiment.txt` percentR=`bash ${script_inferMeta} ser ${repRID}.infer_experiment.txt` fi echo -e "LOG: percentage reads in the same direction as gene: \${percentF}" >> ${repRID}.inferMetadata.log echo -e "LOG: percentage reads in the opposite direction as gene: \${percentR}" >> ${repRID}.inferMetadata.log if [ 1 -eq \$(echo \$(expr \${percentF#*.} ">" 2500)) ] && [ 1 -eq \$(echo \$(expr \${percentR#*.} "<" 2500)) ] then stranded="forward" elif [ 1 -eq \$(echo \$(expr \${percentR#*.} ">" 2500)) ] && [ 1 -eq \$(echo \$(expr \${percentF#*.} "<" 2500)) ] then stranded="reverse" else stranded="unstranded" fi echo -e "LOG: stradedness set to: \${stranded}" >> ${repRID}.inferMetadata.log if [ "${strandedForce}" != "" ] then stranded=${strandedForce} echo -e "LOG: spike-in metadata forced: \${stranded}" >> ${repRID}.inferMetadata.log fi else ends="" stranded="" spike="" species="" percentF="" percentR="" fail="" touch ${repRID}.infer_experiment.txt fi # write inferred metadata to file echo "\${ends},\${stranded},\${spike},\${species},\${align_ercc},\${align_hu},\${align_mo},\${percentF},\${percentR},\${fail}" > infer.csv # save species error file echo "\${speciesError},\${speciesError_details}" > speciesError.csv """ } // Split metadata into separate channels endsInfer = Channel.create() strandedInfer = Channel.create() spikeInfer = Channel.create() speciesInfer = Channel.create() align_erccInfer = Channel.create() align_huInfer = Channel.create() align_moInfer = Channel.create() percentFInfer = Channel.create() percentRInfer = Channel.create() failInfer = Channel.create() inferMetadata_fl.splitCsv(sep: ",", header: false).separate( endsInfer, strandedInfer, spikeInfer, speciesInfer, align_erccInfer, align_huInfer, align_moInfer, percentFInfer, percentRInfer, failInfer ) // Replicate metadata for multiple process inputs endsInfer.into { endsInfer_checkMetadata endsInfer_alignData endsInfer_countData endsInfer_dataQC endsInfer_aggrQC endsInfer_uploadQC endsInfer_failExecutionRun } strandedInfer.into { strandedInfer_checkMetadata strandedInfer_alignData strandedInfer_countData strandedInfer_aggrQC strandedInfer_uploadQC strandedInfer_failExecutionRun } spikeInfer.into{ spikeInfer_checkMetadata spikeInfer_getRef spikeInfer_aggrQC spikeInfer_uploadExecutionRun spikeInfer_failExecutionRun } speciesInfer.into { speciesInfer_checkMetadata speciesInfer_getRef speciesInfer_aggrQC speciesInfer_uploadExecutionRun speciesInfer_uploadProcessedFile speciesInfer_failExecutionRun } // Split species count error into separate channel speciesError = Channel.create() speciesError_details = Channel.create() speciesError_fl.splitCsv(sep: ",", header: false).separate( speciesError, speciesError_details ) // Replicate errors for multiple process inputs speciesError.into { speciesError_checkMetadata speciesError_uploadExecutionRun speciesError_getRef speciesError_alignData speciesError_dedupData speciesError_makeBigWig speciesError_countData speciesError_fastqc speciesError_dataQC speciesError_aggrQC speciesError_uploadQC speciesError_uploadQC_fail speciesError_uploadProcessedFile speciesError_uploadOutputBag speciesError_failPreExecutionRun_species } /* * checkMetadata: checks the submitted metada against inferred */ process checkMetadata { tag "${repRID}" input: val endsMeta from endsMeta_checkMetadata val strandedMeta from strandedMeta_checkMetadata val spikeMeta from spikeMeta_checkMetadata val speciesMeta from speciesMeta_checkMetadata val endsInfer from endsInfer_checkMetadata val strandedInfer from strandedInfer_checkMetadata val spikeInfer from spikeInfer_checkMetadata val speciesInfer from speciesInfer_checkMetadata val fastqCountError_checkMetadata val fastqReadError_checkMetadata val fastqFileError_checkMetadata val speciesError_checkMetadata output: path ("check.csv") into checkMetadata_fl path ("outputBagRID.csv") optional true into outputBagRID_fl_dummy when: fastqCountError_checkMetadata == "false" fastqReadError_checkMetadata == "false" fastqFileError_checkMetadata == "false" speciesError_checkMetadata == "false" script: """ hostname > ${repRID}.checkMetadata.log ulimit -a >> ${repRID}.checkMetadata.log pipelineError=false pipelineError_ends=false pipelineError_stranded=false pipelineError_spike=false pipelineError_species=false # check if submitted metadata matches inferred if [ "${strandedMeta}" != "${strandedInfer}" ] then if [ "${params.strandedForce}" != "" ] then pipelineError=false pipelineError_stranded=false echo -e "LOG: stranded forced: Submitted=${strandedMeta}; Inferred=${strandedInfer}" >> ${repRID}.checkMetadata.log else pipelineError=true pipelineError_stranded=true if [ "${strandedMeta}" == "stranded" ] then if [[ "${strandedInfer}" == "forward" ]] || [[ "${strandedInfer}" == "reverse" ]] then pipelineError=false pipelineError_stranded=false echo -e "LOG: stranded matches: Submitted=${strandedMeta}; Inferred=${strandedInfer}" >> ${repRID}.checkMetadata.log else echo -e "LOG: stranded does not match: Submitted=${strandedMeta}; Inferred=${strandedInfer}" >> ${repRID}.checkMetadata.log fi else echo -e "LOG: stranded does not match: Submitted=${strandedMeta}; Inferred=${strandedInfer}" >> ${repRID}.checkMetadata.log fi fi else pipelineError=false pipelineError_stranded=false echo -e "LOG: stranded matches: Submitted=${strandedMeta}; Inferred=${strandedInfer}" >> ${repRID}.checkMetadata.log fi if [ "${endsMeta}" != "${endsInfer}" ] then pipelineError=true pipelineError_ends=true echo -e "LOG: ends do not match: Submitted=${endsMeta}; Inferred=${endsInfer}" >> ${repRID}.checkMetadata.log else pipelineError_ends=false echo -e "LOG: ends matches: Submitted=${endsMeta}; Inferred=${endsInfer}" >> ${repRID}.checkMetadata.log fi if [ "${spikeMeta}" != "${spikeInfer}" ] then if [[ "${params.spikeForce}" != "" ]] then pipelineError_spike=false echo -e "LOG: spike forced: Submitted=${spikeMeta}; Inferred=${spikeInfer}" >> ${repRID}.checkMetadata.log else pipelineError=true pipelineError_spike=true echo -e "LOG: spike does not match: Submitted=${spikeMeta}; Inferred=${spikeInfer}" >> ${repRID}.checkMetadata.log fi else pipelineError_spike=false echo -e "LOG: spike matches: Submitted=${spikeMeta}; Inferred=${spikeInfer}" >> ${repRID}.checkMetadata.log fi if [ "${speciesMeta}" != "${speciesInfer}" ] then if [[ "${params.speciesForce}" != "" ]] then pipelineError_species=false echo -e "LOG: species forced: Submitted=${speciesMeta}; Inferred=${speciesInfer}" >> ${repRID}.checkMetadata.log else pipelineError=true pipelineError_species=true echo -e "LOG: species does not match: Submitted=${speciesMeta}; Inferred=${speciesInfer}" >> ${repRID}.checkMetadata.log fi else pipelineError_species=false echo -e "LOG: species matches: Submitted=${speciesMeta}; Inferred=${speciesInfer}" >> ${repRID}.checkMetadata.log fi # create dummy output bag rid if failure if [ \${pipelineError} == true ] then echo "fail" > outputBagRID.csv fi # write checks to file echo "\${pipelineError},\${pipelineError_ends},\${pipelineError_stranded},\${pipelineError_spike},\${pipelineError_species}" > check.csv """ } // Split errors into separate channels pipelineError = Channel.create() pipelineError_ends = Channel.create() pipelineError_stranded = Channel.create() pipelineError_spike = Channel.create() pipelineError_species = Channel.create() checkMetadata_fl.splitCsv(sep: ",", header: false).separate( pipelineError, pipelineError_ends, pipelineError_stranded, pipelineError_spike, pipelineError_species ) // Replicate errors for multiple process inputs pipelineError.into { pipelineError_getRef pipelineError_alignData pipelineError_dedupData pipelineError_makeBigWig pipelineError_countData pipelineError_fastqc pipelineError_dataQC pipelineError_aggrQC pipelineError_uploadQC pipelineError_uploadQC_fail pipelineError_uploadProcessedFile pipelineError_uploadOutputBag pipelineError_failExecutionRun } /* * uploadInputBag: uploads the input bag */ process uploadInputBag { tag "${repRID}" input: path script_uploadInputBag path credential, stageAs: "credential.json" from deriva_uploadInputBag path inputBag from inputBag_uploadInputBag val studyRID from studyRID_uploadInputBag output: path ("inputBagRID.csv") into inputBagRID_fl when: upload script: """ hostname > ${repRID}.uploadInputBag.log ulimit -a >> ${repRID}.uploadInputBag.log yr=\$(date +'%Y') mn=\$(date +'%m') dy=\$(date +'%d') file=\$(basename -a ${inputBag}) md5=\$(md5sum ./\${file} | awk '{ print \$1 }') echo LOG: ${repRID} input bag md5 sum - \${md5} >> ${repRID}.uploadInputBag.log size=\$(wc -c < ./\${file}) echo LOG: ${repRID} input bag size - \${size} bytes >> ${repRID}.uploadInputBag.log exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Input_Bag/File_MD5=\${md5}) if [ "\${exist}" == "[]" ] then cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} loc=\$(deriva-hatrac-cli --host ${source} put ./\${file} /hatrac/resources/rnaseq/pipeline/input_bag/study/${studyRID}/replicate/${repRID}/\${file} --parents) inputBag_rid=\$(python3 ${script_uploadInputBag} -f \${file} -l \${loc} -s \${md5} -b \${size} -o ${source} -c \${cookie}) echo LOG: input bag RID uploaded - \${inputBag_rid} >> ${repRID}.uploadInputBag.log rid=\${inputBag_rid} else exist=\$(echo \${exist} | grep -o '\\"RID\\":\\".*\\",\\"RCT') exist=\${exist:7:-6} echo LOG: input bag RID already exists - \${exist} >> ${repRID}.uploadInputBag.log rid=\${exist} fi echo "\${rid}" > inputBagRID.csv """ } // Extract input bag RID into channel inputBagRID = Channel.create() inputBagRID_fl.splitCsv(sep: ",", header: false).separate( inputBagRID ) // Replicate input bag RID for multiple process inputs inputBagRID.into { inputBagRID_uploadExecutionRun inputBagRID_finalizeExecutionRun inputBagRID_failPreExecutionRun inputBagRID_failExecutionRun } /* * uploadExecutionRun: uploads the execution run */ process uploadExecutionRun { tag "${repRID}" input: path script_uploadExecutionRun_uploadExecutionRun path credential, stageAs: "credential.json" from deriva_uploadExecutionRun val spike from spikeInfer_uploadExecutionRun val species from speciesInfer_uploadExecutionRun val inputBagRID from inputBagRID_uploadExecutionRun val fastqCountError_uploadExecutionRun val fastqReadError_uploadExecutionRun val fastqFileError_uploadExecutionRun val speciesError_uploadExecutionRun output: path ("executionRunRID.csv") into executionRunRID_fl when: upload fastqCountError_uploadExecutionRun == "false" fastqReadError_uploadExecutionRun == "false" fastqFileError_uploadExecutionRun == "false" speciesError_uploadExecutionRun == "false" script: """ hostname > ${repRID}.uploadExecutionRun.log ulimit -a >> ${repRID}.uploadExecutionRun.log echo LOG: searching for workflow RID - BICF mRNA ${workflow.manifest.version} >> ${repRID}.uploadExecutionRun.log workflow=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Workflow/Name=BICF%20mRNA%20Replicate/Version=${workflow.manifest.version}) workflow=\$(echo \${workflow} | grep -o '\\"RID\\":\\".*\\",\\"RCT') workflow=\${workflow:7:-6} echo LOG: workflow RID extracted - \${workflow} >> ${repRID}.uploadExecutionRun.log if [ "${species}" == "Homo sapiens" ] then genomeName=\$(echo GRCh${refHuVersion}) elif [ "${species}" == "Mus musculus" ] then genomeName=\$(echo GRCm${refMoVersion}) fi if [ "${spike}" == "true" ] then genomeName=\$(echo \${genomeName}-S) fi echo LOG: searching for genome name - \${genomeName} >> ${repRID}.uploadExecutionRun.log genome=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Name=\${genomeName}) genome=\$(echo \${genome} | grep -o '\\"RID\\":\\".*\\",\\"RCT') genome=\${genome:7:-6} echo LOG: genome RID extracted - \${genome} >> ${repRID}.uploadExecutionRun.log cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Execution_Run/Workflow=\${workflow}/Replicate=${repRID}/Input_Bag=${inputBagRID}) echo \${exist} >> ${repRID}.uploadExecutionRun.log if [ "\${exist}" == "[]" ] then executionRun_rid=\$(python3 ${script_uploadExecutionRun_uploadExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s In-progress -d 'Run in process' -o ${source} -c \${cookie} -u F) echo LOG: execution run RID uploaded - \${executionRun_rid} >> ${repRID}.uploadExecutionRun.log else rid=\$(echo \${exist} | grep -o '\\"RID\\":\\".*\\",\\"RCT') rid=\${rid:7:-6} echo \${rid} >> ${repRID}.uploadExecutionRun.log executionRun_rid=\$(python3 ${script_uploadExecutionRun_uploadExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s In-progress -d 'Run in process' -o ${source} -c \${cookie} -u \${rid}) echo LOG: execution run RID updated - \${executionRun_rid} >> ${repRID}.uploadExecutionRun.log fi echo "\${executionRun_rid}" > executionRunRID.csv if [ ${params.track} == true ] then curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "ID": "${workflow.sessionId}", \ "ExecutionRunRID": "'\${executionRun_rid}'" \ }' \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/track" fi """ } // Extract execution run RID into channel executionRunRID = Channel.create() executionRunRID_fl.splitCsv(sep: ",", header: false).separate( executionRunRID ) // Replicate execution run RID for multiple process inputs executionRunRID.into { executionRunRID_uploadQC executionRunRID_uploadProcessedFile executionRunRID_uploadOutputBag executionRunRID_finalizeExecutionRun executionRunRID_failExecutionRun executionRunRID_fail } /* * getRef: downloads appropriate reference */ process getRef { tag "${species}" input: path script_refData path credential, stageAs: "credential.json" from deriva_getRef val spike from spikeInfer_getRef val species from speciesInfer_getRef val fastqCountError_getRef val fastqReadError_getRef val fastqFileError_getRef val speciesError_getRef val pipelineError_getRef output: tuple path ("hisat2", type: 'dir'), path ("*.bed"), path ("*.fna"), path ("*.gtf"), path ("geneID.tsv"), path ("Entrez.tsv") into reference when: fastqCountError_getRef == "false" fastqReadError_getRef == "false" fastqFileError_getRef == "false" speciesError_getRef == "false" pipelineError_getRef == "false" script: """ hostname > ${repRID}.getRef.log ulimit -a >> ${repRID}.getRef.log # link credential file for authentication echo -e "LOG: linking deriva credentials" >> ${repRID}.getRef.log mkdir -p ~/.deriva ln -sf `readlink -e credential.json` ~/.deriva/credential.json echo -e "LOG: linked" >> ${repRID}.getRef.log # set the reference name if [ "${species}" == "Mus musculus" ] then reference=\$(echo ${referenceBase}/GRCm${refMoVersion}) refName=GRCm elif [ '${species}' == "Homo sapiens" ] then reference=\$(echo ${referenceBase}/GRCh${refHuVersion}) refName=GRCh else echo -e "LOG: ERROR - References could not be set!\nSpecies reference found: ${species}" >> ${repRID}.getRef.log exit 1 fi if [ "${spike}" == "true" ] then reference=\$(echo \${reference}-S) elif [ "${spike}" == "false" ] then reference=\$(echo \${reference}) fi echo -e "LOG: species set to \${reference}" >> ${repRID}.getRef.log # retreive appropriate reference appropriate location echo -e "LOG: fetching ${species} reference files from ${referenceBase}" >> ${repRID}.getRef.log if [ ${referenceBase} == "/project/BICF/BICF_Core/shared/gudmap/references/new" ] then echo -e "LOG: grabbing reference files from local (BioHPC)" >> ${repRID}.getRef.log unzip \${reference}.zip mv \$(basename \${reference})/data/* . elif [ ${params.refSource} == "datahub" ] then echo -e "LOG: grabbing reference files from datahub" >> ${repRID}.getRef.log GRCv=\$(echo \${reference} | grep -o \${refName}.* | cut -d '.' -f1) GRCp=\$(echo \${reference} | grep -o \${refName}.* | cut -d '.' -f2) GENCODE=\$(echo \${reference} | grep -o \${refName}.* | cut -d '.' -f3) if [ "${spike}" == "true" ] then query=\$(echo 'https://${referenceBase}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Reference_Version='\${GRCv}'.'\${GRCp}'/Annotation_Version=GENCODE%20'\${GENCODE}'/Used_Spike_Ins=true') else query=\$(echo 'https://${referenceBase}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Reference_Version='\${GRCv}'.'\${GRCp}'/Annotation_Version=GENCODE%20'\${GENCODE}'/Used_Spike_Ins=false') fi curl --request GET \${query} > refQuery.json refURL=\$(python ${script_refData} --returnParam URL) loc=\$(dirname \${refURL}) fName=\$(python ${script_refData} --returnParam fName) fName=\${fName%.*} if [ "\${loc}" = "/hatrac/*" ]; then echo "LOG: Reference not present in hatrac"; exit 1; fi filename=\$(echo \$(basename \${refURL}) | grep -oP '.*(?=:)') deriva-hatrac-cli --host ${referenceBase} get \${refURL} unzip \$(basename \${refURL}) mv \${fName}/data/* . fi echo -e "LOG: fetched" >> ${repRID}.getRef.log mv ./annotation/genome.gtf . mv ./sequence/genome.fna . mv ./annotation/genome.bed . mv ./metadata/Entrez.tsv . mv ./metadata/geneID.tsv . """ } // Replicate reference for multiple process inputs reference.into { reference_alignData reference_countData reference_dataQC } /* * alignData: aligns the reads to a reference database */ process alignData { tag "${repRID}" input: path fastq from fastqsTrim_alignData path reference_alignData val ends from endsInfer_alignData val stranded from strandedInfer_alignData val fastqCountError_alignData val fastqReadError_alignData val fastqFileError_alignData val speciesError_alignData val pipelineError_alignData output: tuple path ("${repRID}.sorted.bam"), path ("${repRID}.sorted.bam.bai") into rawBam path ("*.alignSummary.txt") into alignQC when: fastqCountError_alignData == "false" fastqReadError_alignData == "false" fastqFileError_alignData == "false" speciesError_alignData == "false" pipelineError_alignData == "false" script: """ hostname > ${repRID}.align.log ulimit -a >> ${repRID}.align.log # set stranded param for hisat2 if [ "${stranded}"=="unstranded" ] then strandedParam="" elif [ "${stranded}" == "forward" ] && [ "${ends}" == "se" ] then strandedParam="--rna-strandness F" elif [ "${stranded}" == "forward" ] && [ "${ends}" == "pe" ] then strandedParam="--rna-strandness FR" elif [ "${stranded}" == "reverse" ] && [ "${ends}" == "se" ] then strandedParam="--rna-strandness R" elif [ "${stranded}" == "reverse" ] && [ "${ends}" == "pe" ] then strandedParam="--rna-strandness RF" fi # align the reads with Hisat2 echo -e "LOG: aligning ${ends}" >> ${repRID}.align.log if [ "${ends}" == "se" ] then hisat2 -p `nproc` --add-chrname --un-gz ${repRID}.unal.gz -S ${repRID}.sam -x hisat2/genome \${strandedParam} -U ${fastq[0]} --summary-file ${repRID}.alignSummary.txt --new-summary elif [ "${ends}" == "pe" ] then hisat2 -p `nproc` --add-chrname --un-gz ${repRID}.unal.gz -S ${repRID}.sam -x hisat2/genome \${strandedParam} --no-mixed --no-discordant -1 ${fastq[0]} -2 ${fastq[1]} --summary-file ${repRID}.alignSummary.txt --new-summary fi echo -e "LOG: alignined" >> ${repRID}.align.log # convert the output sam file to a sorted bam file using Samtools echo -e "LOG: converting from sam to bam" >> ${repRID}.align.log samtools view -1 -@ `nproc` -F 4 -F 8 -F 256 -o ${repRID}.bam ${repRID}.sam # sort the bam file using Samtools echo -e "LOG: sorting the bam file" >> ${repRID}.align.log proc=\$(expr `nproc` - 1) mem=\$(vmstat -s -S K | grep 'total memory' | grep -o '[0-9]*') mem=\$(expr \${mem} / \${proc} \\* 75 / 100) samtools sort -@ \${proc} -m \${mem}K -O BAM -o ${repRID}.sorted.bam ${repRID}.bam # index the sorted bam using Samtools echo -e "LOG: indexing sorted bam file" >> ${repRID}.align.log samtools index -@ `nproc` -b ${repRID}.sorted.bam ${repRID}.sorted.bam.bai """ } // Replicate rawBam for multiple process inputs rawBam.set { rawBam_dedupData } /* *dedupData: mark the duplicate reads, specifically focused on PCR or optical duplicates */ process dedupData { tag "${repRID}" publishDir "${outDir}/bam", mode: 'copy', pattern: "*.deduped.bam" input: tuple path (bam), path (bai) from rawBam_dedupData val fastqCountError_dedupData val fastqReadError_dedupData val fastqFileError_dedupData val speciesError_dedupData val pipelineError_dedupData output: tuple path ("${repRID}_sorted.deduped.bam"), path ("${repRID}_sorted.deduped.bam.bai") into dedupBam tuple path ("${repRID}_sorted.deduped.*.bam"), path ("${repRID}_sorted.deduped.*.bam.bai") into dedupChrBam path ("*.deduped.Metrics.txt") into dedupQC when: fastqCountError_dedupData == 'false' fastqReadError_dedupData == 'false' fastqFileError_dedupData == 'false' speciesError_dedupData == 'false' pipelineError_dedupData == 'false' script: """ hostname > ${repRID}.dedup.log ulimit -a >> ${repRID}.dedup.log # remove duplicated reads using Picard's MarkDuplicates echo -e "LOG: deduplicating reads" >> ${repRID}.dedup.log java -jar /picard/build/libs/picard.jar MarkDuplicates I=${bam} O=${repRID}.deduped.bam M=${repRID}.deduped.Metrics.txt REMOVE_DUPLICATES=true echo -e "LOG: deduplicated" >> ${repRID}.dedup.log # sort the bam file using Samtools echo -e "LOG: sorting the bam file" >> ${repRID}.dedup.log samtools sort -@ `nproc` -O BAM -o ${repRID}_sorted.deduped.bam ${repRID}.deduped.bam # index the sorted bam using Samtools echo -e "LOG: indexing sorted bam file" >> ${repRID}.dedup.log samtools index -@ `nproc` -b ${repRID}_sorted.deduped.bam ${repRID}_sorted.deduped.bam.bai # split the deduped BAM file for multi-threaded tin calculation for i in `samtools view ${repRID}_sorted.deduped.bam | cut -f3 | grep -o chr.[0-9]* | sort | uniq`; do echo "echo \"LOG: splitting each chromosome into its own BAM and BAI files with Samtools\"; samtools view -b ${repRID}_sorted.deduped.bam \${i} 1>> ${repRID}_sorted.deduped.\${i}.bam; samtools index -@ `nproc` -b ${repRID}_sorted.deduped.\${i}.bam ${repRID}_sorted.deduped.\${i}.bam.bai" done | parallel -j `nproc` -k """ } // Replicate dedup bam/bai for multiple process inputs dedupBam.into { dedupBam_countData dedupBam_makeBigWig dedupBam_dataQC dedupBam_uploadProcessedFile } /* *makeBigWig: make BigWig files for output */ process makeBigWig { tag "${repRID}" publishDir "${outDir}/bigwig", mode: 'copy', pattern: "${repRID}.bw" input: tuple path (bam), path (bai) from dedupBam_makeBigWig val fastqCountError_makeBigWig val fastqReadError_makeBigWig val fastqFileError_makeBigWig val speciesError_makeBigWig val pipelineError_makeBigWig output: path ("${repRID}_sorted.deduped.bw") into bigwig when: fastqCountError_makeBigWig == 'false' fastqReadError_makeBigWig == 'false' fastqFileError_makeBigWig == 'false' speciesError_makeBigWig == 'false' pipelineError_makeBigWig == 'false' script: """ hostname > ${repRID}.makeBigWig.log ulimit -a >> ${repRID}.makeBigWig.log # create bigwig echo -e "LOG: creating bibWig" >> ${repRID}.makeBigWig.log bamCoverage -p `nproc` -b ${bam} -o ${repRID}_sorted.deduped.bw echo -e "LOG: created" >> ${repRID}.makeBigWig.log """ } /* *countData: count data and calculate tpm */ process countData { tag "${repRID}" publishDir "${outDir}/count", mode: 'copy', pattern: "${repRID}*_tpmTable.csv" input: path script_calculateTPM path script_convertGeneSymbols tuple path (bam), path (bai) from dedupBam_countData path ref from reference_countData val ends from endsInfer_countData val stranded from strandedInfer_countData val fastqCountError_countData val fastqReadError_countData val fastqFileError_countData val speciesError_countData val pipelineError_countData output: path ("*_tpmTable.csv") into counts path ("*_countData.summary") into countsQC path ("assignedReads.csv") into assignedReadsInfer_fl when: fastqCountError_countData == 'false' fastqReadError_countData == 'false' fastqFileError_countData == 'false' speciesError_countData == 'false' pipelineError_countData == 'false' script: """ hostname > ${repRID}.countData.log ulimit -a >> ${repRID}.countData.log # determine strandedness and setup strandig for countData stranding=0; if [ "${stranded}" == "unstranded" ] then stranding=0 echo -e "LOG: strandedness set to unstranded [0]" >> ${repRID}.countData.log elif [ "${stranded}" == "forward" ] then stranding=1 echo -e "LOG: strandedness set to forward stranded [1]" >> ${repRID}.countData.log elif [ "${stranded}" == "reverse" ] then stranding=2 echo -e "LOG: strandedness set to reverse stranded [2]" >> ${repRID}.countData.log fi # run featureCounts echo -e "LOG: counting ${ends} features" >> ${repRID}.countData.log if [ "${ends}" == "se" ] then featureCounts -T `nproc` -a ./genome.gtf -G ./genome.fna -g 'gene_name' --extraAttributes 'gene_id' -o ${repRID}_countData -s \${stranding} -R SAM --primary --ignoreDup ${repRID}_sorted.deduped.bam elif [ "${ends}" == "pe" ] then featureCounts -T `nproc` -a ./genome.gtf -G ./genome.fna -g 'gene_name' --extraAttributes 'gene_id' -o ${repRID}_countData -s \${stranding} -p -B -R SAM --primary --ignoreDup ${repRID}_sorted.deduped.bam fi echo -e "LOG: counted" >> ${repRID}.countData.log # extract assigned reads grep -m 1 'Assigned' *_countData.summary | grep -oe '\\([0-9.]*\\)' > assignedReads.csv # calculate TPM from the resulting countData table echo -e "LOG: calculating TPM with R" >> ${repRID}.countData.log Rscript ${script_calculateTPM} --count "${repRID}_countData" # convert gene symbols to Entrez id's echo -e "LOG: convert gene symbols to Entrez id's" >> ${repRID}.countData.log Rscript ${script_convertGeneSymbols} --repRID "${repRID}" """ } // Extract number of assigned reads metadata into channel assignedReadsInfer = Channel.create() assignedReadsInfer_fl.splitCsv(sep: ",", header: false).separate( assignedReadsInfer ) // Replicate inferred assigned reads for multiple process inputs assignedReadsInfer.into { assignedReadsInfer_aggrQC assignedReadsInfer_uploadQC } /* *dataQC: calculate transcript integrity numbers (TIN) and bin as well as calculate innerdistance of PE replicates */ process dataQC { tag "${repRID}" input: path script_tinHist path ref from reference_dataQC tuple path (bam), path (bai) from dedupBam_dataQC tuple path (chrBam), path (chrBai) from dedupChrBam val ends from endsInfer_dataQC val fastqCountError_dataQC val fastqReadError_dataQC val fastqFileError_dataQC val speciesError_dataQC val pipelineError_dataQC output: path "${repRID}_tin.hist.tsv" into tinHist path "${repRID}_tin.med.csv" into tinMedInfer_fl path "${repRID}_insertSize.inner_distance_freq.txt" into innerDistance when: fastqCountError_dataQC == 'false' fastqReadError_dataQC == 'false' fastqFileError_dataQC == 'false' speciesError_dataQC == 'false' pipelineError_dataQC == 'false' script: """ hostname > ${repRID}.dataQC.log ulimit -a >> ${repRID}.dataQC.log # calcualte TIN values per feature on each chromosome echo -e "geneID\tchrom\ttx_start\ttx_end\tTIN" > ${repRID}_sorted.deduped.tin.xls for i in `cat ./genome.bed | cut -f1 | grep -o chr.[0-9]* | sort | uniq`; do echo "echo \"LOG: running tin.py on \${i}\" >> ${repRID}.dataQC.log; tin.py -i ${repRID}_sorted.deduped.\${i}.bam -r ./genome.bed; cat ${repRID}_sorted.deduped.\${i}.tin.xls | tr -s \"\\w\" \"\\t\" | grep -P \\\"\\\\t\${i}\\\\t\\\";"; done | parallel -j `nproc` -k 1>> ${repRID}_sorted.deduped.tin.xls # bin TIN values echo -e "LOG: binning TINs" >> ${repRID}.dataQC.log python3 ${script_tinHist} -r ${repRID} echo -e "LOG: binned" >> ${repRID}.dataQC.log # calculate inner-distances for PE data if [ "${ends}" == "pe" ] then echo -e "LOG: calculating inner distances for ${ends}" >> ${repRID}.dataQC.log inner_distance.py -i "${bam}" -o ${repRID}_insertSize -r ./genome.bed echo -e "LOG: calculated" >> ${repRID}.dataQC.log elif [ "${ends}" == "se" ] then echo -e "LOG: creating dummy inner distance file for ${ends}" >> ${repRID}.dataQC.log touch ${repRID}_insertSize.inner_distance_freq.txt fi """ } // Extract median TIN metadata into channel tinMedInfer = Channel.create() tinMedInfer_fl.splitCsv(sep: ",", header: false).separate( tinMedInfer ) // Replicate inferred median TIN for multiple process inputs tinMedInfer.into { tinMedInfer_aggrQC tinMedInfer_uploadQC } /* *aggrQC: aggregate QC from processes as well as metadata and run MultiQC */ process aggrQC { tag "${repRID}" publishDir "${outDir}/report", mode: 'copy', pattern: "${repRID}.multiqc.html" publishDir "${outDir}/qc", mode: 'copy', pattern: "${repRID}.multiqc_data.json" input: path multiqcConfig path bicfLogo path softwareReferences path softwareVersions path fastqc path trimQC path alignQC path dedupQC path countsQC path innerDistance path tinHist path alignSampleQCs from alignSampleQC_aggrQC.collect() path inferExperiment val endsManual from endsManual_aggrQC val endsM from endsMeta_aggrQC val strandedM from strandedMeta_aggrQC val spikeM from spikeMeta_aggrQC val speciesM from speciesMeta_aggrQC val endsI from endsInfer_aggrQC val strandedI from strandedInfer_aggrQC val spikeI from spikeInfer_aggrQC val speciesI from speciesInfer_aggrQC val readLengthM from readLengthMeta val readLengthI from readLengthInfer_aggrQC val rawReadsI from rawReadsInfer_aggrQC val assignedReadsI from assignedReadsInfer_aggrQC val tinMedI from tinMedInfer_aggrQC val studyRID from studyRID_aggrQC val expRID from expRID_aggrQC val fastqCountError_aggrQC val fastqReadError_aggrQC val fastqFileError_aggrQC val speciesError_aggrQC val pipelineError_aggrQC output: path "${repRID}.multiqc.html" into multiqc path "${repRID}.multiqc_data.json" into multiqcJSON when: fastqCountError_aggrQC == 'false' fastqReadError_aggrQC == 'false' fastqFileError_aggrQC == 'false' speciesError_aggrQC == 'false' pipelineError_aggrQC == 'false' script: """ hostname > ${repRID}.aggrQC.log ulimit -a >> ${repRID}.aggrQC.log # make run table if [ "${params.inputBagForce}" == "" ] && [ "${params.fastqsForce}" == "" ] && [ "${params.speciesForce}" == "" ] && [ "${params.strandedForce}" == "" ] && [ "${params.spikeForce}" == "" ] then input="default" else input="override:" if [ "${params.inputBagForce}" != "" ] then input=\$(echo \${input} inputBag) fi if [ "${params.fastqsForce}" != "" ] then input=\$(echo \${input} fastq) fi if [ "${params.speciesForce}" != "" ] then input=\$(echo \${input} species) fi if [ "${params.strandedForce}" != "" ] then input=\$(echo \${input} stranded) fi if [ "${params.spikeForce}" != "" ] then input=\$(echo \${input} spike) fi fi echo -e "LOG: creating run table" >> ${repRID}.aggrQC.log echo -e "Session\tSession ID\tStart Time\tPipeline Version\tInput" > run.tsv echo -e "Session\t${workflow.sessionId}\t${workflow.start}\t${workflow.manifest.version}\t\${input}" >> run.tsv # make RID table echo -e "LOG: creating RID table" >> ${repRID}.aggrQC.log echo -e "Replicate\tReplicate RID\tExperiment RID\tStudy RID" > rid.tsv echo -e "Replicate\t${repRID}\t${expRID}\t${studyRID}" >> rid.tsv # make metadata table echo -e "LOG: creating metadata table" >> ${repRID}.aggrQC.log echo -e "Source\tSpecies\tEnds\tStranded\tSpike-in\tRaw Reads\tAssigned Reads\tMedian Read Length\tMedian TIN" > metadata.tsv echo -e "Submitter\t${speciesM}\t${endsM}\t${strandedM}\t${spikeM}\t-\t-\t'${readLengthM}'\t-" >> metadata.tsv if [ "${params.speciesForce}" == "" ] then input=\$(echo "Inferred\\t${speciesI}\\t") else input=\$(echo "Inferred\\t${speciesI} (FORCED)\\t") fi input=\$(echo \${input}"${endsI}\\t") if [ "${params.strandedForce}" == "" ] then input=\$(echo \${input}"${strandedI}\\t") else input=\$(echo \${input}"${strandedI} (FORCED)\\t") fi if [ "${params.spikeForce}" == "" ] then input=\$(echo \${input}"${spikeI}\\t-\\t-\\t-\\t-") else input=\$(echo \${input}"${spikeI} (FORCED)\\t-\\t-\\t-\\t-") fi echo -e \${input} >> metadata.tsv echo -e "Measured\t-\t${endsManual}\t-\t-\t'${rawReadsI}'\t'${assignedReadsI}'\t'${readLengthI}'\t'${tinMedI}'" >> metadata.tsv # make reference table echo -e "LOG: creating referencerun table" >> ${repRID}.aggrQC.log echo -e "Species\tGenome Reference Consortium Build\tGenome Reference Consortium Patch\tGENCODE Annotation Release" > reference.tsv echo -e "Human\tGRCh\$(echo `echo ${params.refHuVersion} | cut -d "." -f 1`)\t\$(echo `echo ${params.refHuVersion} | cut -d "." -f 2`)\t'\$(echo `echo ${params.refHuVersion} | cut -d "." -f 3 | sed "s/^v//"`)'" >> reference.tsv echo -e "Mouse\tGRCm\$(echo `echo ${params.refMoVersion} | cut -d "." -f 1`)\t\$(echo `echo ${params.refMoVersion} | cut -d "." -f 2`)\t'\$(echo `echo ${params.refMoVersion} | cut -d "." -f 3 | sed "s/^v//"`)'" >> reference.tsv # remove inner distance report if it is empty (SE repRID) echo -e "LOG: removing dummy inner distance file" >> ${repRID}.aggrQC.log if [ "${endsM}" == "se" ] then rm -f ${innerDistance} fi # run MultiQC echo -e "LOG: running multiqc" >> ${repRID}.aggrQC.log multiqc -c ${multiqcConfig} . -n ${repRID}.multiqc.html cp ${repRID}.multiqc_data/multiqc_data.json ${repRID}.multiqc_data.json if [ ${params.track} == true ] then curl -H 'Content-Type: application/json' -X PUT -d \ @./${repRID}.multiqc_data.json \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/qc" fi """ } /* * uploadQC: uploads the mRNA QC */ process uploadQC { tag "${repRID}" input: path script_deleteEntry_uploadQC path script_uploadQC path credential, stageAs: "credential.json" from deriva_uploadQC val executionRunRID from executionRunRID_uploadQC val ends from endsInfer_uploadQC val stranded from strandedInfer_uploadQC val length from readLengthInfer_uploadQC val rawCount from rawReadsInfer_uploadQC val finalCount from assignedReadsInfer_uploadQC val tinMed from tinMedInfer_uploadQC val fastqCountError_uploadQC val fastqReadError_uploadQC val fastqFileError_uploadQC val speciesError_uploadQC val pipelineError_uploadQC output: path ("qcRID.csv") into qcRID_fl when: upload fastqCountError_uploadQC == 'false' fastqReadError_uploadQC == 'false' fastqFileError_uploadQC == 'false' speciesError_uploadQC == 'false' pipelineError_uploadQC == 'false' script: """ hostname > ${repRID}.uploadQC.log ulimit -a >> ${repRID}.uploadQC.log if [ "${ends}" == "pe" ] then end="Paired End" elif [ "${ends}" == "se" ] then end="Single End" fi cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:mRNA_QC/Replicate=${repRID}) if [ "\${exist}" != "[]" ] then rids=\$(echo \${exist} | grep -o '\\"RID\\":\\".\\{7\\}' | sed 's/^.\\{7\\}//') for rid in \${rids} do python3 ${script_deleteEntry_uploadQC} -r \${rid} -t mRNA_QC -o ${source} -c \${cookie} echo LOG: old mRNA QC RID deleted - \${rid} >> ${repRID}.uploadQC.log done echo LOG: all old mRNA QC RIDs deleted >> ${repRID}.uploadQC.log fi qc_rid=\$(python3 ${script_uploadQC} -r ${repRID} -e ${executionRunRID} -p "\${end}" -s ${stranded} -l ${length} -w ${rawCount} -f ${finalCount} -t ${tinMed} -o ${source} -c \${cookie} -u F) echo LOG: mRNA QC RID uploaded - \${qc_rid} >> ${repRID}.uploadQC.log echo "\${qc_rid}" > qcRID.csv """ } /* *uploadProcessedFile: uploads the processed files */ process uploadProcessedFile { tag "${repRID}" publishDir "${outDir}/outputBag", mode: 'copy', pattern: "Replicate_${repRID}.outputBag.zip" input: path script_deleteEntry_uploadProcessedFile path credential, stageAs: "credential.json" from deriva_uploadProcessedFile path executionRunExportConfig path multiqc path multiqcJSON tuple path (bam),path (bai) from dedupBam_uploadProcessedFile path bigwig path counts val species from speciesInfer_uploadProcessedFile val studyRID from studyRID_uploadProcessedFile val expRID from expRID_uploadProcessedFile val executionRunRID from executionRunRID_uploadProcessedFile val fastqCountError_uploadProcessedFile val fastqReadError_uploadProcessedFile val fastqFileError_uploadProcessedFile val speciesError_uploadProcessedFile val pipelineError_uploadProcessedFile output: path ("${repRID}_Output_Bag.zip") into outputBag when: upload fastqCountError_uploadProcessedFile == 'false' fastqReadError_uploadProcessedFile == 'false' fastqFileError_uploadProcessedFile == 'false' speciesError_uploadProcessedFile == 'false' pipelineError_uploadProcessedFile == 'false' script: """ hostname > ${repRID}.outputBag.log ulimit -a >> ${repRID}.outputBag.log mkdir -p ./deriva/Seq/pipeline/${studyRID}/${executionRunRID}/ cp ${bam} ./deriva/Seq/pipeline/${studyRID}/${executionRunRID}/ cp ${bai} ./deriva/Seq/pipeline/${studyRID}/${executionRunRID}/ cp ${bigwig} ./deriva/Seq/pipeline/${studyRID}/${executionRunRID}/ cp ${counts} ./deriva/Seq/pipeline/${studyRID}/${executionRunRID}/ cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Processed_File/Replicate=${repRID}) if [ "\${exist}" != "[]" ] then rids=\$(echo \${exist} | grep -o '\\"RID\\":\\".\\{7\\}' | sed 's/^.\\{7\\}//') for rid in \${rids} do python3 ${script_deleteEntry_uploadProcessedFile} -r \${rid} -t Processed_File -o ${source} -c \${cookie} done echo LOG: all old processed file RIDs deleted >> ${repRID}.uploadQC.log fi deriva-upload-cli --catalog 2 --token \${cookie:9} ${source} ./deriva echo LOG: processed files uploaded >> ${repRID}.outputBag.log deriva-download-cli --catalog 2 --token \${cookie:9} ${source} ${executionRunExportConfig} . rid=${executionRunRID} echo LOG: execution run bag downloaded >> ${repRID}.outputBag.log echo -e "### Run Details" >> runDetails.md echo -e "**Workflow URL:** https://git.biohpc.swmed.edu/gudmap_rbk/rna-seq" >> runDetails.md echo -e "**Workflow Version:** ${workflow.manifest.version}" >> runDetails.md echo -e "**Description:** ${workflow.manifest.description}" >> runDetails.md if [ "${species}" == "Mus musculus" ]; then genome=\$(echo GRCm${refMoVersion} | cut -d '.' -f1) patch=\$(echo ${refMoVersion} | cut -d '.' -f2) annotation=\$(echo ${refMoVersion} | cut -d '.' -f3 | tr -d 'v') elif [ "${species}" == "Homo sapiens" ]; then genome=\$(echo GRCh${refHuVersion} | cut -d '.' -f1) patch=\$(echo ${refHuVersion} | cut -d '.' -f2) annotation=\$(echo ${refHuVersion} | cut -d '.' -f3 | tr -d 'v') fi echo -e "**Genome Assembly Version:** \${genome} patch \${patch}" >> runDetails.md echo -e "**Annotation Version:** GENCODE release \${annotation}" >> runDetails.md echo -e "**Run ID:** ${repRID}" >> runDetails.md echo LOG: runDetails.md created >> ${repRID}.outputBag.log unzip Execution_Run_${executionRunRID}.zip yr=\$(date +'%Y') mn=\$(date +'%m') dy=\$(date +'%d') mv Execution_Run_${executionRunRID} ${repRID}_Output_Bag_\${yr}\${mn}\${dy} loc=./${repRID}_Output_Bag/data/assets/Study/${studyRID}/Experiment/${expRID}/Replicate/${repRID}/Execution_Run/${executionRunRID}/Output_Files/ mkdir -p \${loc} cp runDetails.md \${loc} cp ${multiqc} \${loc} cp ${multiqcJSON} \${loc} bdbag ./${repRID}_Output_Bag/ --update --archiver zip --debug echo LOG: output bag created >> ${repRID}.outputBag.log """ } /* * uploadOutputBag: uploads the output bag */ process uploadOutputBag { tag "${repRID}" input: path script_uploadOutputBag path credential, stageAs: "credential.json" from deriva_uploadOutputBag path outputBag val studyRID from studyRID_uploadOutputBag val executionRunRID from executionRunRID_uploadOutputBag val fastqCountError_uploadOutputBag val fastqReadError_uploadOutputBag val fastqFileError_uploadOutputBag val speciesError_uploadOutputBag val pipelineError_uploadOutputBag output: path ("outputBagRID.csv") into outputBagRID_fl when: upload fastqCountError_uploadOutputBag == 'false' fastqReadError_uploadOutputBag == 'false' fastqFileError_uploadOutputBag == 'false' speciesError_uploadOutputBag == 'false' pipelineError_uploadOutputBag == 'false' script: """ hostname > ${repRID}.uploadOutputBag.log ulimit -a >> ${repRID}.uploadOutputBag.log yr=\$(date +'%Y') mn=\$(date +'%m') dy=\$(date +'%d') file=\$(basename -a ${outputBag}) md5=\$(md5sum ./\${file} | awk '{ print \$1 }') echo LOG: ${repRID} output bag md5 sum - \${md5} >> ${repRID}.uploadOutputBag.log size=\$(wc -c < ./\${file}) echo LOG: ${repRID} output bag size - \${size} bytes >> ${repRID}.uploadOutputBag.log loc=\$(deriva-hatrac-cli --host ${source} put ./\${file} /hatrac/resources/rnaseq/pipeline/output_bag/study/${studyRID}/replicate/${repRID}/\${file} --parents) echo LOG: output bag uploaded - \${loc} >> ${repRID}.uploadOutputBag.log # url-ify the location loc=\${loc//\\//%2F} loc=\${loc//:/%3A} loc=\${loc// /@20} cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Output_Bag/File_URL=\${loc}) if [ "\${exist}" == "[]" ] then outputBag_rid=\$(python3 ${script_uploadOutputBag} -e ${executionRunRID} -f \${file} -l \${loc} -s \${md5} -b \${size} -o ${source} -c \${cookie} -u F) echo LOG: output bag RID uploaded - \${outputBag_rid} >> ${repRID}.uploadOutputBag.log rid=\${outputBag_rid} else exist=\$(echo \${exist} | grep -o '\\"RID\\":\\".*\\",\\"RCT') exist=\${exist:8:-6} outputBag_rid=\$(python3 ${script_uploadOutputBag} -e ${executionRunRID} -o ${source} -c \${cookie} -u \${exist}) echo LOG: output bag RID already exists - \${exist} >> ${repRID}.uploadOutputBag.log rid=\${exist} fi echo "\${rid}" > outputBagRID.csv """ } // Extract output bag RID into channel outputBagRID = Channel.create() outputBagRID_fl.splitCsv(sep: ",", header: false).separate( outputBagRID ) /* * finalizeExecutionRun: finalizes the execution run */ process finalizeExecutionRun { tag "${repRID}" input: path script_uploadExecutionRun_finalizeExecutionRun path credential, stageAs: "credential.json" from deriva_finalizeExecutionRun val executionRunRID from executionRunRID_finalizeExecutionRun val inputBagRID from inputBagRID_finalizeExecutionRun val outputBagRID when: upload script: """ hostname > ${repRID}.finalizeExecutionRun.log ulimit -a >> ${repRID}.finalizeExecutionRun.log executionRun=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Execution_Run/RID=${executionRunRID}) workflow=\$(echo \${executionRun} | grep -o '\\"Workflow\\":.*\\"Reference' | grep -oP '(?<=\\"Workflow\\":\\").*(?=\\",\\"Reference)') genome=\$(echo \${executionRun} | grep -o '\\"Reference_Genome\\":.*\\"Input_Bag' | grep -oP '(?<=\\"Reference_Genome\\":\\").*(?=\\",\\"Input_Bag)') cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} rid=\$(python3 ${script_uploadExecutionRun_finalizeExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s Success -d 'Run Successful' -o ${source} -c \${cookie} -u ${executionRunRID}) echo LOG: execution run RID marked as successful - \${rid} >> ${repRID}.finalizeExecutionRun.log if [ ${params.track} == true ] then dt=`date +%FT%T.%3N%:z` curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "ID": "${workflow.sessionId}", \ "Complete": "'\${dt}'" \ }' \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/track" fi """ } // Combine errors error_meta = fastqCountError_uploadQC_fail.ifEmpty(false).combine(fastqReadError_uploadQC_fail.ifEmpty(false).combine(fastqFileError_uploadQC_fail.ifEmpty(false).combine(speciesError_uploadQC_fail.ifEmpty(false).combine(pipelineError_uploadQC_fail.ifEmpty(false))))) error_meta. into{ error_failPreExecutionRun error_uploadQC_fail } errorDetails = fastqCountError_details.ifEmpty("").combine(fastqReadError_details.ifEmpty("").combine(fastqFileError_details.ifEmpty("").combine(speciesError_details.ifEmpty("")))) /* * failPreExecutionRun_fastq: fail the execution run prematurely for fastq errors */ process failPreExecutionRun { tag "${repRID}" input: path script_uploadExecutionRun from script_uploadExecutionRun_failPreExecutionRun path credential, stageAs: "credential.json" from deriva_failPreExecutionRun val spike from spikeMeta_failPreExecutionRun val species from speciesMeta_failPreExecutionRun val inputBagRID from inputBagRID_failPreExecutionRun tuple val (fastqCountError), val (fastqReadError), val (fastqFileError), val (speciesError), val (pipelineError) from error_failPreExecutionRun tuple val (fastqCountError_details), val (fastqReadError_details), val (fastqFileError_details), val (speciesError_details) from errorDetails output: path ("executionRunRID.csv") into executionRunRID_preFail_fl when: upload fastqCountError == 'true' || fastqReadError == 'true' || fastqFileError == 'true' || speciesError == 'true' script: """ hostname > ${repRID}.failPreExecutionRun.log ulimit -a >> ${repRID}.failPreExecutionRun.log errorDetails="" if [ ${fastqCountError} == true ] then errorDetails=\$(echo ${fastqCountError_details}"\\n") elif [ ${fastqReadError} == true ] then errorDetails=\$(echo \$(errorDetails)${fastqReadError_details}"\\n") elif [ ${fastqFileError} == true ] then errorDetails=\$(echo \$(errorDetails)${fastqFileError_details}"\\n") elif [ ${speciesError} == true ] then errorDetails=\$(echo \$(errorDetails)${speciesError_details}"\\n") fi echo LOG: searching for workflow RID - BICF mRNA ${workflow.manifest.version} >> ${repRID}.failPreExecutionRun.log workflow=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Workflow/Name=BICF%20mRNA%20Replicate/Version=${workflow.manifest.version}) workflow=\$(echo \${workflow} | grep -o '\\"RID\\":\\".*\\",\\"RCT') workflow=\${workflow:7:-6} echo LOG: workflow RID extracted - \${workflow} >> ${repRID}.failPreExecutionRun.log if [ "${species}" == "Homo sapiens" ] then genomeName=\$(echo GRCh${refHuVersion}) elif [ "${species}" == "Mus musculus" ] then genomeName=\$(echo GRCm${refMoVersion}) fi if [ "${spike}" == "true" ] then genomeName=\$(echo \${genomeName}-S) fi echo LOG: searching for genome name - \${genomeName} >> ${repRID}.failPreExecutionRun.log genome=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Reference_Genome/Name=\${genomeName}) genome=\$(echo \${genome} | grep -o '\\"RID\\":\\".*\\",\\"RCT') genome=\${genome:7:-6} echo LOG: genome RID extracted - \${genome} >> ${repRID}.failPreExecutionRun.log cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Execution_Run/Workflow=\${workflow}/Replicate=${repRID}/Input_Bag=${inputBagRID}) echo \${exist} >> ${repRID}.failPreExecutionRun.log if [ "\${exist}" == "[]" ] then rid=\$(python3 ${script_uploadExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s Error -d "\${errorDetails}" -o ${source} -c \${cookie} -u F) echo LOG: execution run RID uploaded - \${rid} >> ${repRID}.failPreExecutionRun.log else rid=\$(echo \${exist} | grep -o '\\"RID\\":\\".*\\",\\"RCT') rid=\${rid:7:-6} echo \${rid} >> ${repRID}.failPreExecutionRun.log executionRun_rid=\$(python3 ${script_uploadExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s Error -d "\${errorDetails}" -o ${source} -c \${cookie} -u \${rid}) echo LOG: execution run RID updated - \${executionRun_rid} >> ${repRID}.failPreExecutionRun.log fi echo "\${rid}" > executionRunRID.csv if [ ${params.track} == true ] then dt=`date +%FT%T.%3N%:z` curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "ID": "${workflow.sessionId}", \ "ExecutionRunRID": "'\${rid}'", \ "Failure": "'\${dt}'" \ }' \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/track" fi """ } // Extract execution run RID into channel executionRunRID_preFail = Channel.create() executionRunRID_preFail_fl.splitCsv(sep: ",", header: false).separate( executionRunRID_preFail ) failExecutionRunRID = executionRunRID_fail.ifEmpty('').mix(executionRunRID_preFail.ifEmpty('')).filter { it != "" } /* * failExecutionRun: fail the execution run */ process failExecutionRun { tag "${repRID}" input: path script_uploadExecutionRun_failExecutionRun path credential, stageAs: "credential.json" from deriva_failExecutionRun val executionRunRID from executionRunRID_failExecutionRun val inputBagRID from inputBagRID_failExecutionRun val endsMeta from endsMeta_failExecutionRun val endsRaw val strandedMeta from strandedMeta_failExecutionRun val spikeMeta from spikeMeta_failExecutionRun val speciesMeta from speciesMeta_failExecutionRun val endsInfer from endsInfer_failExecutionRun val strandedInfer from strandedInfer_failExecutionRun val spikeInfer from spikeInfer_failExecutionRun val speciesInfer from speciesInfer_failExecutionRun val pipelineError from pipelineError_failExecutionRun val pipelineError_ends val pipelineError_stranded val pipelineError_spike val pipelineError_species when: upload pipelineError == 'true' script: """ hostname > ${repRID}.failExecutionRun.log ulimit -a >> ${repRID}.failExecutionRun.log executionRun=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:Execution_Run/RID=${executionRunRID}) workflow=\$(echo \${executionRun} | grep -o '\\"Workflow\\":.*\\"Reference' | grep -oP '(?<=\\"Workflow\\":\\").*(?=\\",\\"Reference)') genome=\$(echo \${executionRun} | grep -o '\\"Reference_Genome\\":.*\\"Input_Bag' | grep -oP '(?<=\\"Reference_Genome\\":\\").*(?=\\",\\"Input_Bag)') cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} errorDetails="" if [ ${pipelineError} == false ] then rid=\$(python3 ${script_uploadExecutionRun_failExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s Success -d 'Run Successful' -o ${source} -c \${cookie} -u ${executionRunRID}) echo LOG: execution run RID marked as successful - \${rid} >> ${repRID}.failExecutionRun.log else pipelineError_details=\$(echo "**Submitted metadata does not match inferred:**\\n") pipelineError_details=\$(echo \${pipelineError_details}"|Metadata|Submitted value|Inferred value|\\n") pipelineError_details=\$(echo \${pipelineError_details}"|:-:|-:|-:|\\n") if ${pipelineError_ends} then if [ "${endsInfer}" == "se" ] then endInfer="Single End" elif [ "${endsInfer}" == "pe" ] then endInfer="Paired End" else endInfer="unknown" fi pipelineError_details=\$(echo \${pipelineError_details}"|Paired End|${endsRaw}|"\${endInfer}"|\\n") fi if ${pipelineError_stranded} then pipelineError_details=\$(echo \${pipelineError_details}"|Strandedness|${strandedMeta}|${strandedInfer}|\\n") fi if ${pipelineError_spike} then pipelineError_details=\$(echo \${pipelineError_details}"|Used Spike Ins|${spikeMeta}|${spikeInfer}|\\n") fi if ${pipelineError_species} then pipelineError_details=\$(echo \${pipelineError_details}"|Species|${speciesMeta}|${speciesInfer}|\\n") fi pipelineError_details=\${pipelineError_details::-2} rid=\$(python3 ${script_uploadExecutionRun_failExecutionRun} -r ${repRID} -w \${workflow} -g \${genome} -i ${inputBagRID} -s Error -d "\${pipelineError_details}" -o ${source} -c \${cookie} -u ${executionRunRID}) echo LOG: execution run RID marked as error - \${rid} >> ${repRID}.failExecutionRun.log fi if [ ${params.track} == true ] then dt=`date +%FT%T.%3N%:z` curl -H 'Content-Type: application/json' -X PUT -d \ '{ \ "ID": "${workflow.sessionId}", \ "ExecutionRunRID": "'\${rid}'", \ "Failure": "'\${dt}'" \ }' \ "https://9ouc12dkwb.execute-api.us-east-2.amazonaws.com/prod/db/track" fi """ } /* * uploadQC_fail: uploads the mRNA QC on failed execution run */ process uploadQC_fail { tag "${repRID}" input: path script_deleteEntry_uploadQC_fail path script_uploadQC_fail path credential, stageAs: "credential.json" from deriva_uploadQC_fail val executionRunRID from failExecutionRunRID tuple val (fastqCountError), val (fastqReadError), val (fastqFileError), val (speciesError), val (pipelineError) from error_uploadQC_fail when: upload fastqCountError == 'true' || fastqReadError == 'true' || fastqFileError == 'true' || speciesError == 'true' || pipelineError == 'true' script: """ hostname > ${repRID}.uploadQC.log ulimit -a >> ${repRID}.uploadQC.log cookie=\$(cat credential.json | grep -A 1 '\\"${source}\\": {' | grep -o '\\"cookie\\": \\".*\\"') cookie=\${cookie:11:-1} exist=\$(curl -s https://${source}/ermrest/catalog/2/entity/RNASeq:mRNA_QC/Replicate=${repRID}) if [ "\${exist}" != "[]" ] then rids=\$(echo \${exist} | grep -o '\\"RID\\":\\".\\{7\\}' | sed 's/^.\\{7\\}//') for rid in \${rids} do python3 ${script_deleteEntry_uploadQC_fail} -r \${rid} -t mRNA_QC -o ${source} -c \${cookie} echo LOG: old mRNA QC RID deleted - \${rid} >> ${repRID}.uploadQC.log done echo LOG: all old mRNA QC RIDs deleted >> ${repRID}.uploadQC.log fi qc_rid=\$(python3 ${script_uploadQC_fail} -r ${repRID} -e ${executionRunRID} -o ${source} -c \${cookie} -u E) echo LOG: mRNA QC RID uploaded - \${qc_rid} >> ${repRID}.uploadQC.log echo "\${qc_rid}" > qcRID.csv """ } workflow.onError = { subject = "$workflow.manifest.name FAILED: $params.repRID" def msg = """\ Pipeline error summary --------------------------- RID : ${params.repRID} Version : ${workflow.manifest.version} Duration : ${workflow.duration} Nf Version : ${workflow.nextflow.version} Message : ${workflow.errorMessage} exit status : ${workflow.exitStatus} """ .stripIndent() if (email != '') { sendMail(to: email, subject: subject , body: msg) } }