diff --git a/workflow/rna-seq.nf b/workflow/rna-seq.nf index 15e8effaefaa51649f6e71d6d95a2d3c98bec63f..0a56dd904b3f96f5d020f080fd5c6a85f9c4f7ec 100644 --- a/workflow/rna-seq.nf +++ b/workflow/rna-seq.nf @@ -421,7 +421,8 @@ process inferMetadata { set val (repRID), path (inBam), path (inBai) from dedupBam_rseqc output: - path "infer.csv" into inferMetadata + path "infer.csv" into inferedMetadata + path "${inBam.baseName}.tin.xls" into tin script: @@ -470,31 +471,7 @@ process inferMetadata { # calcualte TIN values per feature tin.py -i "${inBam}" -r ./bed/genome.bed - # aggregate infered metadata (including generate TIN stats) - Rscript aggregateInference.R --endness "\${endness}" --stranded "\${stranded}" --strategy "\${strategy}" --percentF \${percentF} --percentR \${percentR} --percentFail \${fail} --tin "${inBam.baseName}.tin.xls" + # write infered metadata to file + echo \${endness},\${stranded},\${strategy},\${percentF},\${percentR},\${percentFail} > infer.csv """ } - -// Split infered metadata into separate channels -endsMetaI = Channel.create() -strandedI = Channel.create() -strategyI = Channel.create() -percentFI = Channel.create() -percentRI = Channel.create() -percentFailI = Channel.create() -tinMinI = Channel.create() -tinMedI = Channel.create() -tinMaxI = Channel.create() -tinSDI = Channel.create() -inferMetadata.splitCsv(sep: ",", header: false).separate( - endsMetaI, - strandedI, - strategyI, - percentFI, - percentRI, - percentFailI, - tinMinI, - tinMedI, - tinMaxI, - tinSDI -)