diff --git a/r.scripts/sc_PC.Score.NE.R b/r.scripts/sc_PC.Score.NE.R index 42e31962fcc35b57dfae38797de0c0addb2e3139..b9b5ef1d60d4d6f0f401681e1ddd47822eac4cd5 100755 --- a/r.scripts/sc_PC.Score.NE.R +++ b/r.scripts/sc_PC.Score.NE.R @@ -105,7 +105,11 @@ plot(plot) dev.off() #subsample all cells (+NE) to better visualize their clustering -rnd <- sample(1:ncol(sc10x.Group@data),opt$sv) +if (!is.na(opt$s)){ + rnd <- sample(1:ncol(sc10x.Group@data),opt$sv) +} else { + rnd <- 1:ncol(sc10x.Group@data) +} sc10x.Group <- SetIdent(object=sc10x.Group,cells.use=sc10x.Group@data@Dimnames[[2]][rnd],ident.use="sample") if (clust$size[1]<clust$size[2]){ clusterCut <- names(clusterCut[clusterCut==1])