diff --git a/r.scripts/sc_QC.R b/r.scripts/sc_QC.R index e458b1a7e99b5c93af4e999029c03935a8063e97..103016653d5ba194b2b9593ab2338547e9bfbeac 100755 --- a/r.scripts/sc_QC.R +++ b/r.scripts/sc_QC.R @@ -75,7 +75,7 @@ sc10x.Group@data <- sc10x.Group@data[!rownames(sc10x.Group@data) %in% mito.genes sc10x.Group <- FindVariableGenes(object=sc10x.Group,mean.function=ExpMean,dispersion.function=LogVMR,x.low.cutoff=0.0125,x.high.cutoff=3,y.cutoff=0.5,do.plot=FALSE) if (opt$cc==TRUE){ gc() - sc10x.Group <- ScaleData(object=sc10x.Group,vars.to.regress=c("nUMI","percent.mito","S.Score","G2M.Score"),display.progress=FALSE,do.par=TRUE,num.cores=40) + sc10x.Group <- ScaleData(object=sc10x.Group,vars.to.regress=c("nUMI","percent.mito","S.Score","G2M.Score"),display.progress=FALSE,do.par=TRUE,num.cores=50) gc() sc10x.Group <- RunPCA(object=sc10x.Group,pc.genes=c(s.genes,g2m.genes),do.print=FALSE,pcs.store=2) sc10x.Group <- SetAllIdent(object=sc10x.Group,id="Phase") @@ -87,7 +87,7 @@ if (opt$cc==TRUE){ dev.off() } else { gc() - sc10x.Group <- ScaleData(object=sc10x.Group,vars.to.regress=c("nUMI","percent.mito"),display.progress=FALSE,do.par=TRUE,num.cores=40) + sc10x.Group <- ScaleData(object=sc10x.Group,vars.to.regress=c("nUMI","percent.mito"),display.progress=FALSE,do.par=TRUE,num.cores=50) gc() } sc10x.Group <- SetAllIdent(object=sc10x.Group,id="ALL") diff --git a/r.scripts/sc_Seurat.Score.CellCycle.R b/r.scripts/sc_Seurat.Score.CellCycle.R index a60fc2700a5032dc96a88199ee9d923a1c5f4070..4cf22d50d7d43eaac96d62e3700d0ad2cea537e0 100755 --- a/r.scripts/sc_Seurat.Score.CellCycle.R +++ b/r.scripts/sc_Seurat.Score.CellCycle.R @@ -33,7 +33,7 @@ cc.genes <- readLines(con="./genesets/regev_lab_cell_cycle_genes.txt") s.genes <- cc.genes[1:43] g2m.genes <- cc.genes[44:97] sc10x.Group <- NormalizeData(object=sc10x.Group) -sc10x.Group <- ScaleData(object=sc10x.Group,display.progress=FALSE,do.par=TRUE,num.cores=40) +sc10x.Group <- ScaleData(object=sc10x.Group,display.progress=FALSE,do.par=TRUE,num.cores=50) sc10x.Group <- CellCycleScoring(object=sc10x.Group,s.genes=s.genes,g2m.genes=g2m.genes,set.ident=TRUE) postscript(paste0("./analysis/",opt$g,"/cc/Ridge_cc.Raw.eps")) plot <- RidgePlot(object=sc10x.Group,features.plot=c("PCNA","TOP2A","MCM6","MKI67"),y.log=TRUE,nCol=2,do.return=TRUE)