diff --git a/.gitignore b/.gitignore
index 74eacbfdda55345c05d3f29b0c55db02b45babc6..09396370d55024e1bbffaac11cf0789212434eb9 100755
--- a/.gitignore
+++ b/.gitignore
@@ -1,7 +1,7 @@
 analysis/*
-!.gitkeep
 .vscode/
 WR/
+stress/*
 *.err
 *.out
 *.Rhistory
@@ -10,3 +10,4 @@ WR/
 *~
 temp_png.png
 Rplots.pdf
+!.gitkeep
diff --git a/r.scripts/StressCompare.R b/r.scripts/StressCompare.R
index b42fe8ae22c12fa6f30c65d36e213f10f6760b69..cf0825ffa39d99b11f165951a01ff68b5b8c736c 100644
--- a/r.scripts/StressCompare.R
+++ b/r.scripts/StressCompare.R
@@ -6,23 +6,119 @@ library(fBasics)
 library(pastecs)
 library(qusage)
 library(RColorBrewer)
+library(VennDiagram)
+library(Cairo)
 
-load("./analysis/sc10x.Stress.Rda")
+load("../analysis/sc10x.Stress.Rda")
 sc10x.Stress <- SetAllIdent(object=sc10x.Stress,id="ALL")
 gene.exp <- as.data.frame(as.matrix(sc10x.Stress@raw.data[,colnames(sc10x.Stress@data)]))
-genes.stress <- read_csv("./genesets/DEG_C2.CGP.M10970.txt")
-genes.stress <- genes.stress[2:nrow(genes.stress),]
-genes.stress <- as.list(genes.stress)
 
-gene.stress.pct <- apply(gene.exp,2,function(x) sum(x[rownames(gene.exp) %in% unlist(genes.stress)])/sum(x))
+genes.stress.go <- read_csv("../genesets/DEG_C2.CGP.M10970.txt")
+genes.stress.go <- genes.stress[2:nrow(genes.stress.go),]
+genes.stress.go <- as.list(genes.stress.go)
 
-histo <- hist(gene.stress.pct,breaks=100,prob=TRUE,plot=TRUE,main="Distribution of Stress Gene Expression in Transcriptome",xlab="% of transcriptome associated to stress genes")
-abline(v=.00575,col="red")
+genes.stress.dws <- read_delim("../genesets/genes.deg.Stress.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE)
+genes.stress.dws <- genes.stress.dws[1]
+colnames(genes.stress.dws) <- "scDWS.Stress"
+genes.stress.dws <- as.list(genes.stress.dws)
 
+genes.stress.vdb <- read_delim("./vanderBrink.Stress.mus.tsv","\t",escape_double=FALSE,trim_ws=TRUE,col_names=FALSE)
+colnames(genes.stress.vdb) <- "vdBrink.Stress"
+genes.homolog <- read_delim("./Ensemble.mus-hum.txt","\t",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE)
+genes.stress.vdb <- list("vdBrink.Stress"=merge(genes.stress.vdb,genes.homolog[,c(2,4)],by.x="vdBrink.Stress",by.y="Gene name")[,2])
 
-sc10x.Stress <- SetAllIdent(object=sc10x.Stress,id="ALL+Stress")
-cell.index.stress <- names(sc10x.Stress@ident[sc10x.Stress@ident=="Stress"])
-cell.index.stress <- which(colnames(gene.exp) %in% cell.index.stress)
-cell.index.ntstress <- names(sc10x.Stress@ident[sc10x.Stress@ident=="ALL"])
-cell.index.ntstress <- which(colnames(gene.exp) %in% cell.index.ntstress)
+venn.diagram(list(go=unlist(genes.stress.go),dws=unlist(genes.stress.dws),vdb=unlist(genes.stress.vdb)),"./Venn.tiff")
 
+for (i in c("go","dws","vdb")){
+  genes.stress=get(paste0("genes.stress.",i))
+  
+  gene.stress.pct <- apply(gene.exp,2,function(x) sum(x[rownames(gene.exp) %in% unlist(genes.stress)])/sum(x))
+
+  #histo <- hist(gene.stress.pct,breaks=100,prob=TRUE,plot=TRUE,main="Distribution of Stress Gene Expression in Transcriptome",xlab="% of transcriptome associated to stress genes")
+  #abline(v=.0575,col="red")
+
+  sc10x.Stress <- SetAllIdent(object=sc10x.Stress,id="ALL+Stress")
+  cell.index.stress <- names(sc10x.Stress@ident[sc10x.Stress@ident=="Stress"])
+  cell.index.stress <- which(colnames(gene.exp) %in% cell.index.stress)
+  cell.index.ntstress <- names(sc10x.Stress@ident[sc10x.Stress@ident=="ALL"])
+  cell.index.ntstress <- which(colnames(gene.exp) %in% cell.index.ntstress)
+
+  histo.stress <- hist(gene.stress.pct[cell.index.stress],breaks=seq(0,ceiling(max(gene.stress.pct)*100)/100,0.005),main="Distribution of Stress Gene Expression in Transcriptome",xlab="% of transcriptome associated to stress genes",plot=FALSE)
+  #abline(v=.0575,col="red")
+  histo.ntstress <- hist(gene.stress.pct[cell.index.ntstress],breaks=seq(0,ceiling(max(gene.stress.pct)*100)/100,0.005),main="Distribution of Stress Gene Expression in Transcriptome",xlab="% of transcriptome associated to stress genes",plot=FALSE)
+  #abline(v=.0575,col="red")
+  
+  Cairo(paste0("./Hist.Stress.",i,".png"),width=1000,height=500,bg="white")
+  plot(histo.ntstress$mids,histo.ntstress$density,col=rgb(0,1,0,1/5),xlim=c(0,ceiling(max(gene.stress.pct)*100)/100),ylim=c(0,ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10),type="h",lend="square",lwd=10,xlab="Fraction of transcriptome associated to stress genes",ylab="Density")
+  par(new=TRUE)
+  plot(histo.stress$mids,histo.stress$density,col=rgb(1,0,0,1/5),xlim=c(0,ceiling(max(gene.stress.pct)*100)/100),ylim=c(0,ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10),type="h",lend="square",lwd=10,axes=FALSE,xlab="",ylab="")
+  abline(v=0.0575,col="red")
+  text(0.0575+0.01,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3+2.5,paste0(round(sum(histo.ntstress$counts[histo.ntstress$breaks>0.035][!is.na(histo.ntstress$counts[histo.ntstress$breaks>0.035])])/sum(histo.ntstress$counts[!is.na(histo.ntstress$counts)])*100),"%"),col="green")
+  text(0.0575-0.01,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3+2.5,paste0(round(sum(histo.ntstress$counts[histo.ntstress$breaks<=0.035][!is.na(histo.ntstress$counts[histo.ntstress$breaks<=0.035])])/sum(histo.ntstress$counts[!is.na(histo.ntstress$counts)])*100),"%"),col="green")
+  text(0.0575+0.01,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3-2.5,paste0(round(sum(histo.stress$counts[histo.stress$breaks>0.035][!is.na(histo.stress$counts[histo.stress$breaks>0.035])])/sum(histo.stress$counts[!is.na(histo.stress$counts)])*100),"%"),col="red")
+  text(0.0575-0.01,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3-2.5,paste0(round(sum(histo.stress$counts[histo.stress$breaks<=0.035][!is.na(histo.stress$counts[histo.stress$breaks<=0.035])])/sum(histo.stress$counts[!is.na(histo.stress$counts)])*100),"%"),col="red")
+  text(0.0575+0.05,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3+2.5,"Not Stressed",col="green")
+  text(0.0575+0.05,(ceiling(max(histo.stress$density,histo.ntstress$density)/10)*10)/4*3-2.5,"Stressed",col="red")
+  dev.off()
+}
+rm(i)
+rm(genes.stress)
+rm(gene.stress.pct)
+rm(cell.index.stress)
+rm(cell.index.ntstress)
+rm(histo.stress)
+rm(histo.ntstress)
+
+for (cut in c(0.9,0.95)){
+  for (i in c("go","dws","vdb")){
+    genes.stress=get(paste0("genes.stress.",i))
+    sc10x.Stress <- SetAllIdent(object=sc10x.Stress,id="ALL")
+    sc10x.Stress.dta <- as.data.frame(as.matrix(sc10x.Stress@data[rownames(sc10x.Stress@scale.data) %in% unlist(genes.stress),]))
+    
+    #Run PCA of subsetted stress genes
+    sc10x.Stress.dta <- t(sc10x.Stress.dta)
+    sc10x.Stress.dta <- sc10x.Stress.dta[,apply(sc10x.Stress.dta,2,var)!=0]
+    sc10x.Stress.dta.pca <- prcomp(sc10x.Stress.dta,center=TRUE,scale.=TRUE)
+    sc10x.Stress.dta.pca <- sc10x.Stress.dta.pca$x[,1:2]
+    colnames(x=sc10x.Stress.dta.pca) <- paste0("Stress",1:2)
+    if (skewness(sc10x.Stress.dta.pca[,1])<0){
+      sc10x.Stress.dta.pca[,1] <- (-sc10x.Stress.dta.pca[,1])
+    }
+    if (skewness(sc10x.Stress.dta.pca[,2])<0){
+      sc10x.Stress.dta.pca[,2] <- (-sc10x.Stress.dta.pca[,2])
+    }
+    sc10x.dta <- sc10x.Stress
+    sc10x.dta <- SetDimReduction(object=sc10x.dta,reduction.type="Stress",slot="cell.embeddings",new.data=sc10x.Stress.dta.pca)
+    sc10x.dta <- SetDimReduction(object=sc10x.dta,reduction.type="Stress",slot="key",new.data="Stress")
+    
+    #CDS
+    cdf <- ecdf(GetCellEmbeddings(object=sc10x.dta,reduction.type="Stress",dims.use=1))
+    cut.x <- quantile(cdf,probs=cut)
+    
+    assign(i,GetCellEmbeddings(object=sc10x.dta,reduction.type="Stress",dims.use=1))
+    assign(paste0("cut.",i,".",cut),cut.x)
+}}
+rm(cut)
+rm(i)
+rm(genes.stress)
+rm(sc10x.Stress.dta)
+rm(sc10x.Stress.dta.pca)
+rm(sc10x.dta)
+rm(cdf)
+rm(cut.x)  
+
+comp <- cbind(vdb,go[match(rownames(vdb),rownames(go))],dws[match(rownames(vdb),rownames(dws))])
+colnames(comp) <- c("vdb","go","dws")
+comp <- data.frame(comp)
+
+Cairo(paste0("./Stress.vdb.vs.go.png"),width=1000,height=500,bg="white")
+ggplot(comp,aes(x=vdb,y=go))+geom_point(size=0.01)+geom_vline(xintercept=cut.vdb.0.9)+geom_hline(yintercept=cut.go.0.9)+annotate("text",x=max(comp$vdb)/4*3,y=max(comp$go)/4*3,col="red",size=10,fontface=2,label=paste0(round(nrow(comp[comp$vdb>cut.vdb.0.9,][comp[comp$vdb>cut.vdb.0.9,"go"]>cut.go.0.9,])/nrow(comp[comp$vdb>cut.vdb.0.9,])*100,1),"%"))+annotate("text",x=max(comp$vdb)/100,y=max(comp$go)/100,col="green",size=10,fontface=2,label=paste0(round(nrow(comp[comp$vdb<=cut.vdb.0.9,][comp[comp$vdb<=cut.vdb.0.9,"go"]<=cut.go.0.9,])/nrow(comp[comp$vdb<=cut.vdb.0.9,])*100,1),"%"))
+dev.off()
+Cairo(paste0("./Stress.vdb.vs.dws.png"),width=1000,height=500,bg="white")
+ggplot(comp,aes(x=vdb,y=dws))+geom_point(size=0.01)+geom_vline(xintercept=cut.vdb.0.9)+geom_hline(yintercept=cut.dws.0.9)+annotate("text",x=max(comp$vdb)/4*3,y=max(comp$dws)/4*3,col="red",size=10,fontface=2,label=paste0(round(nrow(comp[comp$vdb>cut.vdb.0.9,][comp[comp$vdb>cut.vdb.0.9,"dws"]>cut.dws.0.9,])/nrow(comp[comp$vdb>cut.vdb.0.9,])*100,1),"%"))+annotate("text",x=max(comp$vdb)/100,y=max(comp$dws)/100,col="green",size=10,fontface=2,label=paste0(round(nrow(comp[comp$vdb<=cut.vdb.0.9,][comp[comp$vdb<=cut.vdb.0.9,"dws"]<=cut.dws.0.9,])/nrow(comp[comp$vdb<=cut.vdb.0.9,])*100,1),"%"))
+dev.off()
+Cairo(paste0("./Stress.go.vs.dws.png"),width=1000,height=500,bg="white")
+ggplot(comp,aes(x=go,y=dws))+geom_point(size=0.01)+geom_vline(xintercept=cut.go.0.9)+geom_hline(yintercept=cut.dws.0.9)+annotate("text",x=max(comp$go)/4*3,y=max(comp$dws)/4*3,col="red",size=10,fontface=2,label=paste0(round(nrow(comp[comp$go>cut.go.0.9,][comp[comp$go>cut.go.0.9,"dws"]>cut.dws.0.9,])/nrow(comp[comp$go>cut.go.0.9,])*100,1),"%"))+annotate("text",x=max(comp$go)/100,y=max(comp$dws)/100,col="green",size=10,fontface=2,label=paste0(round(nrow(comp[comp$go<=cut.go.0.9,][comp[comp$go<=cut.go.0.9,"dws"]<=cut.dws.0.9,])/nrow(comp[comp$go<=cut.go.0.9,])*100,1),"%"))
+dev.off()
+
+rm(comp)
\ No newline at end of file
diff --git a/stress/.gitkeep b/stress/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391