diff --git a/r.scripts/sc-TissueMapper_RUN.DS.aggr.R b/r.scripts/sc-TissueMapper_RUN.DS.aggr.R new file mode 100644 index 0000000000000000000000000000000000000000..eac42b940f5ada51d9931a3b435ec53b6bb45328 --- /dev/null +++ b/r.scripts/sc-TissueMapper_RUN.DS.aggr.R @@ -0,0 +1,66 @@ +gc() +library(methods) +library(optparse) +library(Seurat) +library(readr) +library(fBasics) +library(pastecs) +library(qusage) +library(RColorBrewer) +library(monocle) +library(dplyr) +library(viridis) +library(reshape2) +library(NMI) + + +source("../r.scripts/sc-TissueMapper.R") +setwd("../") + +if (!dir.exists("./analysis")){ + dir.create("./analysis") +} + +downsamples <- c("All","350","300","250","200","150","100","075","050","037","025","012") +samples <- c("D17","D27","D35") + +all.cells <- NULL +for (i in downsamples){ + assign(paste0("cluster.",i),read_csv(paste0("./analysis/DATA/10x/",i,"/kmeans_10_clusters/clusters.csv"))) + all.cells <- c(all.cells,get(paste0("cluster.",i))$Barcode) +} +all.cells <- unique(all.cells) +all.cells <- data.frame(Barcode=all.cells) +shared.cells <- Reduce(intersect,list(cluster.All$Barcode,cluster.350$Barcode,cluster.300$Barcode,cluster.250$Barcode,cluster.200$Barcode,cluster.150$Barcode,cluster.100$Barcode,cluster.075$Barcode,cluster.050$Barcode,cluster.037$Barcode,cluster.025$Barcode,cluster.012$Barcode)) +for (i in downsamples){ + assign(paste0("cluster.",i),get(paste0("cluster.",i))[get(paste0("cluster.",i))$Barcode %in% shared.cells,]) +} + +#for (i in downsamples){ +# cluster <- all.cells +# cluster$Cluster <- 0 +# cluster <- merge(cluster,get(paste0("cluster.",i)),all=TRUE,by.x="Barcode",by.y="Barcode",no.dups=TRUE) +# cluster[is.na(cluster)] <- 0 +# cluster$Cluster <- cluster$Cluster.x+cluster$Cluster.y +# cluster <- cluster[,-2] +# cluster <- cluster[,-2] +# assign(paste0("cluster.",i),cluster) +# rm(cluster) +#} + +for (i in downsamples[3:12]){ + png(paste0("./analysis/",i,".png"),width=500,height=500,type="cairo") + assign(paste0("plot.",i),ggplot(melt(prop.table(table(cluster.350$Cluster,get(paste0("cluster.",i))$Cluster),1)*100),aes(x=factor(Var1),y=factor(Var2),fill=value))+geom_tile(color="black")+labs(x="350",y=i,fill="% of 350")+theme(line = element_blank())+scale_fill_gradientn(colours=c("white","black"))) + plot(get(paste0("plot.",i))) + dev.off() +} + +nmi <- data.frame(group1=character(),group2=character(),value=double()) +for (i in downsamples[-1]){ + for (j in downsamples[-1]){ + nmi <- rbind(nmi,data.frame(group1=i,group2=j,nmi=NMI(get(paste0("cluster.",i)),get(paste0("cluster.",j))))) +}} +png(paste0("./analysis/NMI.png"),width=500,height=500,type="cairo") +plot.nmi <- ggplot(nmi,aes(x=factor(group1),y=factor(group2),fill=value))+geom_tile(color="black")+labs(x="",y="",fill="NMI")+theme(line = element_blank())+scale_fill_gradientn(colours=c("white","black")) +plot(plot.nmi) +dev.off()