gc() library(methods) library(optparse) library(Seurat) library(readr) library(readxl) library(fBasics) library(pastecs) library(qusage) library(RColorBrewer) library(monocle) library(dplyr) library(viridis) library(gridExtra) options(bitmapType="cairo") setwd("../") source("./r.scripts/sc-TissueMapper_functions.R") source("./r.scripts/sc-TissueMapper_process.R") project.name="PdPbPc" scFolders() sc10x <- scLoad(p=project.name) results <- scQC(sc10x,lg=500,hg=2500,hm=0.1,sub=FALSE) sc10x <- results[[1]] counts.cell.raw <- results[[2]] counts.gene.raw <- results[[3]] counts.cell.filtered <- results[[4]] counts.gene.filtered <- results[[5]] rm(results) results <- scCellCycle(sc10x,sub=FALSE) sc10x <- results[[1]] genes.s <- results[[2]] genes.g2m <- results[[3]] rm(results) sc10x.l <- list() sc10x.l[["Pd"]] <- subset(sc10x,subset= Donor=="Donor") sc10x.l[["Pb"]] <- subset(sc10x,subset= BPH=="BPH") sc10x.l[["Pc"]] <- subset(sc10x,subset= Cancer=="Cancer") sc10x <- scCCA(sc10x.l) rm(sc10x.l) #gc() sc10x <- ScaleData(object=sc10x,vars.to.regress=c("nFeature_RNA","percent.mito","S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=FALSE) #sc10x <- ScaleData(object=sc10x,vars.to.regress=c("nFeature_RNA","percent.mito"),do.par=TRUE,num.cores=45,verbose=FALSE) #gc() results <- scPC(sc10x,pc=50,hpc=0.9,file="pre.stress",print="2",cca=TRUE) sc10x <- results[[1]] pc.use.prestress <- results[[2]] rm(results) sc10x <- scCluster(sc10x,res=0.5,red="pca",dim=pc.use.prestress,print="2",folder="pre.stress") genes.stress <- read_delim("./genesets/genes.deg.Stress.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) genes.stress <- genes.stress[1] colnames(genes.stress) <- "scDWS.Stress" results <- scScore(sc10x,score="Stress",geneset=as.list(genes.stress),cut.pt=0.9,anchor=c("EGR1","FOS","JUN")) sc10x.preStress <- results[[1]] sc10x <- results[[2]] rm(results) #gc() sc10x <- ScaleData(object=sc10x,vars.to.regress=c("nFeature_RNA","percent.mito","S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=FALSE) #sc10x <- ScaleData(object=sc10x,vars.to.regress=c("nFeature_RNA","percent.mito"),do.par=TRUE,num.cores=45,verbose=FALSE) #gc() results <- scPC(sc10x,pc=50,hpc=0.9,file="post.stress",print="2",cca=TRUE) sc10x <- results[[1]] pc.use.poststress <- results[[2]] rm(results) res <- c(seq(0.1,0.5,0.1),0.75,seq(1,5,1)) sc10x <- scCluster(sc10x,res=res,red="pca",dim=pc.use.poststress,print="2",folder="ALL") # gene.set1 <- read_delim("./genesets/DEG_Epi_5FC.txt","\t",escape_double=FALSE,trim_ws=TRUE,col_names=FALSE) # gene.set1 <- as.list(gene.set1) # names(gene.set1) <- "Epi" # gene.set <- c(gene.set1) # gene.set1 <- read_delim("./genesets/DEG_FMSt_5FC.txt","\t",escape_double=FALSE,trim_ws=TRUE,col_names=FALSE) # gene.set1 <- as.list(gene.set1) # names(gene.set1) <- "St" # gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.BE.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "BE" #gene.set <- c(gene.set,gene.set1) gene.set <- c(gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.LE.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "LE" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.OE1.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "Club" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.OE2.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "Hillock" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.NE.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "NE" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.Endo.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "Endo" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.SM.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "SM" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.Fib.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "Fib" gene.set <- c(gene.set,gene.set1) gene.set1 <- read_delim("./genesets/genes.deg.Leu.csv",",",escape_double=FALSE,trim_ws=TRUE,col_names=TRUE) gene.set1 <- gene.set1[1] gene.set1 <- as.list(gene.set1) names(gene.set1) <- "Leu" gene.set <- c(gene.set,gene.set1) # genes.leu <- read_excel("./genesets/40425_2017_215_MOESM1_ESM.xlsx",sheet="S3. Candidate markers") # leu <- as.list(unique(genes.leu[,2]))$Cell # leu <- leu[-c(9,17,20,24,26,28)] # #leu.l <- leu[-c(1,3:4,7:8,13:18,21,20:30)] # #leu.lin <- c("Myeloid","Lymphoid","Lymphoid","Lymphoid","Myeloid","Myeloid","Lymphoid","Myeloid","Myeloid","Myeloid","Myeloid","Myeloid","Lymphoid","Lymphoid","Lymphoid","Myeloid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid","Lymphoid") # #leu.lin <- c("Lymphoid","Myeloid","Myeloid","Myeloid","Myeloid","Myeloid","Myeloid","Lymphoid") # genes.leu <- genes.leu[unlist(genes.leu[,2]) %in% unlist(leu),] # #genes.leu.l <- genes.leu[unlist(genes.leu[,2]) %in% unlist(leu.l),] # #genes.leu.l[nrow(genes.leu.l)+1,] <- list("MS4A7","Macrophages",0) # #genes.leu.l[nrow(genes.leu.l)+1,] <- list("CD14","Macrophages",0) # # genes.leu.l[nrow(genes.leu.l)+1,] <- list("CD86","Macrophages",0) # # genes.leu.l[nrow(genes.leu.l)+1,] <- list("S100A9","Neutrophils",0) # # genes.leu.l[nrow(genes.leu.l)+1,] <- list("EREG","Neutrophils",0) # # genes.leu.l[nrow(genes.leu.l)+1,] <- list("S100A8","Neutrophils",0) # # genes.leu.l[nrow(genes.leu.l)+1,] <- list("FCN1","Neutrophils",0) # gene.set1 <- split(genes.leu[,1], genes.leu[,2]) # #gene.set1 <- split(genes.leu.l[,1], genes.leu.l[,2]) # gene.set1 <- lapply(gene.set1,unname) # gene.set1 <- lapply(gene.set1,unlist) # #names(gene.set1) <- leu.lin # names(gene.set1) <- leu # gene.set <- c(gene.set,gene.set1) rm(gene.set1) min <- min(table(sc10x$integrated_snn_res.0.5)) results <- scQuSAGE(sc10x,gs=gene.set,save=TRUE,type="lg",id="integrated_snn_res.0.5",ds=0,nm="all.pops",print="2") sc10x <- results[[1]] results.cor.all.pops <- results[[2]] results.clust.all.pops.id <- results[[3]] rm(results) rm(gene.set) save(sc0x,file=paste0("./analysis/",project.name,".RData")) save.image(file="./analysis/Data.RData")