Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
sc-TissueMapper
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Strand Lab
sc-TissueMapper
Commits
4ede93c5
Commit
4ede93c5
authored
Jan 25, 2020
by
Gervaise Henry
🤠
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
hu-mu comparison and DIY for muPrUr
parent
be2d10ed
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
229 additions
and
195 deletions
+229
-195
r.scripts/diy_muPrUr.R
r.scripts/diy_muPrUr.R
+130
-0
r.scripts/huPrmuPr.R
r.scripts/huPrmuPr.R
+99
-195
No files found.
r.scripts/diy_muPrUr.R
0 → 100644
View file @
4ede93c5
library
(
Seurat
)
library
(
SingleR
)
library
(
ggplot2
)
library
(
cowplot
)
library
(
gridExtra
)
library
(
RColorBrewer
)
library
(
viridis
)
options
(
bitmapType
=
"cairo"
)
setwd
(
"../"
)
load
(
"./analysis/sc10x.id.rda"
)
load
(
"./analysis/singler_objects.RData"
)
if
(
!
dir.exists
(
paste0
(
"./analysis/vis/diy"
))){
dir.create
(
paste0
(
"./analysis/vis/diy"
))
}
sc10x
$
Region
<-
sc10x
$
samples
Idents
(
sc10x
)
<-
"Region"
sc10x
<-
RenameIdents
(
sc10x
,
"musAd001_PrF"
=
"Prostate"
)
sc10x
<-
RenameIdents
(
sc10x
,
"musAd002_PrF"
=
"Prostate"
)
sc10x
<-
RenameIdents
(
sc10x
,
"musAd003_PrF_St"
=
"Prostate"
)
sc10x
<-
RenameIdents
(
sc10x
,
"musAd007_PrFcol_GEX"
=
"Prostate"
)
sc10x
<-
RenameIdents
(
sc10x
,
"musAd002_UrF"
=
"Urethra"
)
sc10x
<-
RenameIdents
(
sc10x
,
"musAd004n5_UrF_GEX"
=
"Prostate"
)
sc10x
$
Region
<-
Idents
(
sc10x
)
sc10x
$
Region
<-
factor
(
sc10x
$
Region
,
levels
=
c
(
"Prostate"
,
"Urethra"
))
sc10x
$
`Cell Lineage`
<-
sc10x
$
lin
Idents
(
sc10x
)
<-
"Cell Lineage"
sc10x
$
`Cell Lineage`
<-
Idents
(
sc10x
)
sc10x
$
`Cell Lineage`
<-
factor
(
sc10x
$
`Cell Lineage`
,
levels
=
c
(
"Epi"
,
"FMSt"
,
"Endo"
,
"Leu"
))
Idents
(
sc10x
)
<-
"Cell Lineage"
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_lin.eps"
))
DimPlot
(
sc10x
)
+
scale_color_viridis
(
discrete
=
TRUE
,
option
=
"magma"
)
+
theme_cowplot
()
dev.off
()
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_lin.split.eps"
))
DimPlot
(
sc10x
,
split.by
=
"Region"
)
+
scale_color_viridis
(
discrete
=
TRUE
,
option
=
"magma"
)
+
theme_cowplot
()
dev.off
()
labs.lin
<-
singler.lin
$
labels
labs.lin
<-
replace
(
labs.lin
,
labs.lin
==
"Epithelial cells"
,
"Epi"
)
labs.lin
<-
replace
(
labs.lin
,
labs.lin
%in%
c
(
"Stromal cells"
,
"Fibroblasts"
),
"FMSt"
)
labs.lin
<-
replace
(
labs.lin
,
labs.lin
==
"Endothelial cells"
,
"Endo"
)
labs.lin
<-
replace
(
labs.lin
,
labs.lin
%in%
c
(
"Macrophages"
,
"Monocytes"
,
"B cells"
,
"DC"
,
"Eosinophils"
,
"Neutrophils"
,
"T cells"
,
"ILC"
,
"NK cells"
,
"Basophils"
,
"Mast cells"
,
"Tgd"
,
"NKT"
,
"B cells, pro"
,
"Microglia"
),
"Leu"
)
labs.lin
<-
data.frame
(
Cell.Lineage
=
labs.lin
,
row.names
=
rownames
(
singler.lin
))
labs.lin
$
Cell.Lineage
<-
factor
(
labs.lin
$
Cell.Lineage
,
levels
=
c
(
"Epi"
,
"FMSt"
,
"Endo"
,
"Leu"
))
labs.lin.col
=
list
(
Cell.Lineage
=
c
(
Epi
=
magma
(
4
)[
1
],
FMSt
=
magma
(
4
)[
2
],
Endo
=
magma
(
4
)[
3
],
Leu
=
magma
(
4
)[
4
])
)
singler.lin
@
listData
$
scores
<-
singler.lin
@
listData
$
scores
[,
c
(
14
,
7
,
5
,
9
,
10
,
16
,
12
,
3
,
11
,
2
,
1
,
4
,
8
,
13
,
15
,
6
)]
plot
<-
plotScoreHeatmap
(
singler.lin
,
show.labels
=
FALSE
,
show.pruned
=
FALSE
,
annotation_col
=
labs.lin
,
cluster_rows
=
FALSE
,
annotation_colors
=
labs.lin.col
,
cells.order
=
as.integer
(
c
(
1
,
2
,
3
,
4
,
5
,
16
,
14
,
8
,
9
,
10
,
15
,
13
,
12
,
7
,
11
,
6
)))
postscript
(
paste0
(
"./analysis/vis/diy/Corr_lin.eps"
))
print
(
plot
)
dev.off
()
postscript
(
paste0
(
"./analysis/vis/diy/Dot_lin.anchor.eps"
))
DotPlot
(
sc10x
,
features
=
rev
(
c
(
"Epcam"
,
"Cdh1"
,
"Dcn"
,
"Myl9"
,
"Pecam1"
,
"Vwf"
,
"Ptprc"
)),
dot.scale
=
10
,
cols
=
rev
(
heat.colors
(
2
)))
dev.off
()
sc10x.epi
$
Region
<-
sc10x.epi
$
samples
Idents
(
sc10x.epi
)
<-
"Region"
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd001_PrF"
=
"Prostate"
)
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd002_PrF"
=
"Prostate"
)
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd003_PrF_St"
=
"Prostate"
)
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd007_PrFcol_GEX"
=
"Prostate"
)
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd002_UrF"
=
"Urethra"
)
sc10x.epi
<-
RenameIdents
(
sc10x.epi
,
"musAd004n5_UrF_GEX"
=
"Prostate"
)
sc10x.epi
$
Region
<-
Idents
(
sc10x.epi
)
sc10x.epi
$
Region
<-
factor
(
sc10x.epi
$
Region
,
levels
=
c
(
"Prostate"
,
"Urethra"
))
Idents
(
sc10x.epi
)
<-
"integrated_snn_res.0.1"
cells.ap
<-
WhichCells
(
sc10x.epi
,
idents
=
"0"
)
cells.vp
<-
WhichCells
(
sc10x.epi
,
idents
=
"3"
)
cells.ed
<-
WhichCells
(
sc10x.epi
,
idents
=
"4"
)
cells.dlp
<-
WhichCells
(
sc10x.epi
,
idents
=
"5"
)
sc10x.epi
$
`Cell Type`
<-
sc10x.epi
$
hu_pops
Idents
(
sc10x.epi
)
<-
"Cell Type"
sc10x.epi
<-
SetIdent
(
sc10x.epi
,
cell
=
cells.ap
,
value
=
"APr LE"
)
sc10x.epi
<-
SetIdent
(
sc10x.epi
,
cell
=
cells.vp
,
value
=
"VPr LE"
)
sc10x.epi
<-
SetIdent
(
sc10x.epi
,
cell
=
cells.ed
,
value
=
"ED"
)
sc10x.epi
<-
SetIdent
(
sc10x.epi
,
cell
=
cells.dlp
,
value
=
"DLPr LE"
)
sc10x.epi
$
`Cell Type`
<-
Idents
(
sc10x.epi
)
sc10x.epi
$
`Cell Type`
<-
factor
(
sc10x.epi
$
`Cell Type`
,
levels
=
c
(
"BE"
,
"Ur"
,
"VPr LE"
,
"DLPr LE"
,
"APr LE"
,
"ED"
))
Idents
(
sc10x.epi
)
<-
"Cell Type"
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_epi.eps"
))
DimPlot
(
sc10x.epi
)
+
scale_color_viridis
(
discrete
=
TRUE
)
+
theme_cowplot
()
dev.off
()
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_epi.split.eps"
))
DimPlot
(
sc10x.epi
,
split.by
=
"Region"
)
+
scale_color_viridis
(
discrete
=
TRUE
)
+
theme_cowplot
()
dev.off
()
labs.epi
<-
data.frame
(
ID
=
singler.epi
$
labels
,
`Cell Type`
=
c
(
"APr LE"
,
"BE"
,
"Ur"
,
"VPr LE"
,
"ED"
,
"DLPr LE"
),
row.names
=
rownames
(
singler.epi
))
labs.epi
$
ID
<-
factor
(
labs.epi
$
ID
,
levels
=
c
(
"BE"
,
"Ur"
,
"LE"
))
labs.epi.col
=
list
(
ID
=
c
(
BE
=
"brown4"
,
Ur
=
"brown3"
,
LE
=
"brown2"
),
Cell.Type
=
c
(
BE
=
viridis
(
6
)[
1
],
Ur
=
viridis
(
6
)[
2
],
`VPr LE`
=
viridis
(
6
)[
3
],
`DLPr LE`
=
viridis
(
6
)[
4
],
`APr LE`
=
viridis
(
6
)[
5
],
ED
=
viridis
(
6
)[
6
])
)
labs.epi
$
Cell.Type
<-
factor
(
labs.epi
$
Cell.Type
,
levels
=
c
(
"BE"
,
"Ur"
,
"VPr LE"
,
"DLPr LE"
,
"APr LE"
,
"ED"
))
singler.epi
@
listData
$
scores
<-
singler.epi
@
listData
$
scores
[,
c
(
1
,
3
,
2
)]
plot
<-
plotScoreHeatmap
(
singler.epi
,
show.labels
=
FALSE
,
show.pruned
=
FALSE
,
annotation_col
=
labs.epi
,
cluster_rows
=
FALSE
,
annotation_colors
=
labs.epi.col
,
cells.order
=
as.integer
(
c
(
5
,
1
,
2
,
3
,
6
,
4
)))
postscript
(
paste0
(
"./analysis/vis/diy/Corr_epi.eps"
))
print
(
plot
)
dev.off
()
postscript
(
paste0
(
"./analysis/vis/diy/Dot_epi.anchor.eps"
))
DotPlot
(
sc10x.epi
,
features
=
rev
(
c
(
"Krt5"
,
"Krt4"
,
"Sbp"
,
"Msmb"
,
"Tgm4"
,
"Svs2"
)),
dot.scale
=
10
,
cols
=
rev
(
heat.colors
(
2
)))
dev.off
()
deg.lin
<-
FindAllMarkers
(
sc10x
,
assay
=
"SCT"
,
slot
=
"data"
,
logfc.threshold
=
0
,
test.use
=
"MAST"
,
only.pos
=
TRUE
)
deg.epi
<-
FindAllMarkers
(
sc10x.epi
,
assay
=
"SCT"
,
slot
=
"data"
,
logfc.threshold
=
0
,
test.use
=
"MAST"
,
only.pos
=
TRUE
)
write.table
(
deg.lin
,
file
=
"./analysis/vis/diy/DEG_lin.csv"
,
sep
=
","
,
quote
=
FALSE
,
row.names
=
FALSE
,
col.names
=
TRUE
)
write.table
(
deg.epi
,
file
=
"./analysis/vis/diy/DEG_epi.csv"
,
sep
=
","
,
quote
=
FALSE
,
row.names
=
FALSE
,
col.names
=
TRUE
)
Idents
(
sc10x
)
<-
"integrated_snn_res.0.5"
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_lin.res0.5.eps"
))
DimPlot
(
sc10x
)
+
theme_cowplot
()
dev.off
()
Idents
(
sc10x.epi
)
<-
"integrated_snn_res.0.1"
postscript
(
paste0
(
"./analysis/vis/diy/UMAP_epi.res0.1.eps"
))
DimPlot
(
sc10x.epi
)
+
theme_cowplot
()
dev.off
()
\ No newline at end of file
r.scripts/huPrmuPr.R
View file @
4ede93c5
...
...
@@ -19,9 +19,8 @@ library(ggplot2)
options
(
bitmapType
=
"cairo"
)
option_list
=
list
(
make_option
(
"--p"
,
action
=
"store"
,
default
=
"muPr"
,
type
=
'character'
,
help
=
"Project Name"
),
make_option
(
"--s"
,
action
=
"store"
,
default
=
"mu"
,
type
=
'character'
,
help
=
"Species"
),
make_option
(
"--o"
,
action
=
"store"
,
default
=
"pr"
,
type
=
'character'
,
help
=
"Organ"
)
make_option
(
"--p"
,
action
=
"store"
,
default
=
"muPrUr"
,
type
=
'character'
,
help
=
"Project Name"
),
make_option
(
"--r"
,
action
=
"store"
,
default
=
"epi"
,
type
=
'character'
,
help
=
"Reference Subset"
)
)
opt
=
parse_args
(
OptionParser
(
option_list
=
option_list
))
rm
(
option_list
)
...
...
@@ -32,173 +31,68 @@ setwd("../")
source
(
"./r.scripts/sc-TissueMapper_functions.R"
)
source
(
"./r.scripts/sc-TissueMapper_process.R"
)
if
(
opt
$
s
==
"hu"
){
hpca.se
<-
HumanPrimaryCellAtlasData
()
lin.se
<-
hpca.se
leu.se
<-
hpca.se
}
else
if
(
opt
$
s
==
"mu"
){
igd.se
<-
ImmGenData
()
#lin.se <- igd.se
#leu.se <- igd.se
lin.se
<-
subset
(
igd.se
,
select
=
(
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
igd.se
),
4
,
10
)))
>=
920648
&
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
igd.se
),
4
,
10
)))
<=
2112477
))
lin.se
<-
subset
(
lin.se
,
select
=!
(
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
lin.se
),
4
,
10
)))
%in%
1398469
:
1398471
))
leu.se
<-
lin.se
convert
<-
read.delim
(
"/work/urology/ghenry/RNA-Seq/SingleCell/PIPELINE/RUN/muPr/genesets/Ensemble.mus-hum.txt"
)
}
igd.se
<-
ImmGenData
()
lin.se
<-
subset
(
igd.se
,
select
=
(
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
igd.se
),
4
,
10
)))
>=
920648
&
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
igd.se
),
4
,
10
)))
<=
2112477
))
lin.se
<-
subset
(
lin.se
,
select
=!
(
as.numeric
(
gsub
(
"_"
,
""
,
substr
(
colnames
(
lin.se
),
4
,
10
)))
%in%
1398469
:
1398471
))
leu.se
<-
lin.se
rm
(
igd.se
)
if
(
opt
$
o
==
"pr"
){
load
(
"./genesets/scDWShuPr.rda"
)
try
(
if
(
as.numeric
(
substring
(
sc10x
@
version
,
1
,
1
))
<
3
){
sc10x
<-
UpdateSeuratObject
(
sc10x
)
}
)
Idents
(
sc10x
)
<-
"pops"
sc10x
<-
subset
(
sc10x
,
idents
=
c
(
"NE"
,
"Endo"
),
invert
=
TRUE
)
Idents
(
sc10x
)
<-
"lin"
sc10x
<-
subset
(
sc10x
,
idents
=
c
(
"Leu"
),
invert
=
TRUE
)
scDWSpr.se
<-
as.SingleCellExperiment
(
sc10x
)
rm
(
sc10x
)
convert
<-
read.delim
(
"/work/urology/ghenry/RNA-Seq/SingleCell/PIPELINE/RUN/muPr/genesets/Ensemble.mus-hum.txt"
)
if
(
opt
$
r
==
"epi"
){
load
(
"./genesets/sc10x.epi.id.rda"
)
sc10x
<-
sc10x.epi
rm
(
sc10x.epi
)
rm
(
sc10x.fmst
)
rm
(
sc10x.leu
)
Idents
(
sc10x
)
<-
"pops"
sc10x
<-
subset
(
sc10x
,
idents
=
c
(
"NE"
),
invert
=
TRUE
)
sc10x
<-
RenameIdents
(
sc10x
,
"Hillock"
=
"Ur"
)
sc10x
<-
RenameIdents
(
sc10x
,
"Club"
=
"Ur"
)
sc10x
$
pops
<-
Idents
(
sc10x
)
sc10x
$
pops
<-
factor
(
sc10x
$
pops
,
levels
=
c
(
"BE"
,
"LE"
,
"Ur"
))
Idents
(
sc10x
)
<-
"pops"
}
else
if
(
opt
$
r
==
"fmst"
){
load
(
"./genesets/sc10x.fmst.id.rda"
)
sc10x
<-
sc10x.st
rm
(
sc10x.st
)
if
(
opt
$
s
==
"mu"
){
scDWSpr.se
<-
scDWSpr.se
[
rownames
(
scDWSpr.se
)
%in%
convert
$
Human.gene.name
,]
rownames
(
scDWSpr.se
)
<-
convert
$
Gene.name
[
match
(
rownames
(
scDWSpr.se
),
convert
$
Human.gene.name
)]
}
Idents
(
sc10x
)
<-
"pops"
}
try
(
if
(
as.numeric
(
substring
(
sc10x
@
version
,
1
,
1
))
<
3
){
sc10x
<-
UpdateSeuratObject
(
sc10x
)
}
)
Idents
(
sc10x
)
<-
"pops"
scDWSpr.se
<-
as.SingleCellExperiment
(
sc10x
,
assay
=
"RNA"
)
rm
(
sc10x
)
scDWSpr.se
<-
scDWSpr.se
[
rownames
(
scDWSpr.se
)
%in%
convert
$
Human.gene.name
,]
rownames
(
scDWSpr.se
)
<-
convert
$
Gene.name
[
match
(
rownames
(
scDWSpr.se
),
convert
$
Human.gene.name
)]
load
(
"./analysis/sc10x.raw.rda"
)
sc10x.se
<-
as.SingleCellExperiment
(
sc10x
)
sc10x.se
<-
as.SingleCellExperiment
(
sc10x
,
assay
=
"RNA"
)
common
<-
intersect
(
rownames
(
sc10x.se
),
rownames
(
lin.se
))
lin.se
<-
lin.se
[
common
,]
sc10x.se
<-
sc10x.se
[
common
,]
rm
(
common
)
#singler.lin <- SingleR(sc10x.se,ref=lin.se,method="cluster",clusters=sc10x.se$integrated_snn_res.0.1,labels=lin.se$label.main,BPPARAM=MulticoreParam(workers=10))
#sc10x$lin <- singler.lin$labels[match(sc10x.se$integrated_snn_res.0.1,singler.lin@rownames)]
singler.lin
<-
SingleR
(
sc10x.se
,
ref
=
lin.se
,
method
=
"single"
,
labels
=
lin.se
$
label.main
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x
$
lin
<-
singler.lin
$
labels
if
(
opt
$
s
==
"hu"
){
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"DC"
,
"B_cell"
,
"Neutrophil"
,
"T_cells"
,
"Monocyte"
,
"Macrophage"
,
"NK_cell"
,
"Neutrophils"
,
"CMP"
,
"GMP"
,
"MEP"
,
"Myelocyte"
,
"Pre-B_cell_CD34-"
,
"Pro-B_cell_CD34+"
,
"Pro-Myelocyte"
,
"HSC_-G-CSF"
,
"HSC_CD34+"
)]
<-
"Leu"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Endothelial_cells"
,
"Erythroblast"
,
"Platelets"
)]
<-
"Endo"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Smooth_muscle_cells"
,
"Fibroblasts"
,
"Chondrocytes"
,
"Osteoblasts"
,
"MSC"
,
"Tissue_stem_cells"
)]
<-
"FMSt"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Epithelial_cells"
,
"Keratinocytes"
,
"Neuroepithelial_cell"
)]
<-
"Epi"
}
else
if
(
opt
$
s
==
"mu"
){
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Macrophages"
,
"Monocytes"
,
"B cells"
,
"DC"
,
"Eosinophils"
,
"Neutrophils"
,
"T cells"
,
"ILC"
,
"NK cells"
,
"Basophils"
,
"Mast cells"
,
"Tgd"
,
"NKT"
,
"B cells, pro"
,
"Microglia"
)]
<-
"Leu"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Endothelial cells"
)]
<-
"Endo"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Stromal cells"
,
"Fibroblasts"
)]
<-
"FMSt"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Epithelial cells"
)]
<-
"Epi"
#sc10x$leu <- sc10x$lin
#sc10x$leu[sc10x$leu != "Leu"] <- "non-Leu"
}
DimPlot
(
sc10x
,
group.by
=
"lin"
,
reduction
=
"umap"
,
label
=
TRUE
,
repel
=
TRUE
)
+
theme
(
legend.position
=
"none"
)
singler.lin
<-
SingleR
(
sc10x.se
,
ref
=
lin.se
,
method
=
"cluster"
,
clusters
=
sc10x.se
$
integrated_snn_res.0.5
,
labels
=
lin.se
$
label.main
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x
$
lin
<-
singler.lin
$
labels
[
match
(
sc10x.se
$
integrated_snn_res.0.5
,
singler.lin
@
rownames
)]
#singler.lin <- SingleR(sc10x.se,ref=lin.se,method="single",labels=lin.se$label.main,BPPARAM=MulticoreParam(workers=10))
#sc10x$lin <- singler.lin$labels
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Macrophages"
,
"Monocytes"
,
"B cells"
,
"DC"
,
"Eosinophils"
,
"Neutrophils"
,
"T cells"
,
"ILC"
,
"NK cells"
,
"Basophils"
,
"Mast cells"
,
"Tgd"
,
"NKT"
,
"B cells, pro"
,
"Microglia"
)]
<-
"Leu"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Endothelial cells"
)]
<-
"Endo"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Stromal cells"
,
"Fibroblasts"
)]
<-
"FMSt"
sc10x
$
lin
[
sc10x
$
lin
%in%
c
(
"Epithelial cells"
)]
<-
"Epi"
#DimPlot(sc10x,group.by="lin",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
#Idents(sc10x) <- "leu"
#sc10x.leu <- subset(sc10x,idents="Leu")
#sc10x.nonleu <- subset(sc10x,idents="non-Leu")
Idents
(
sc10x
)
<-
"lin"
sc10x.EpiFMSt
<-
subset
(
sc10x
,
idents
=
c
(
"Leu"
,
"Endo"
),
invert
=
TRUE
)
sc10x.epi
<-
subset
(
sc10x
,
idents
=
c
(
"Epi"
))
sc10x.fmst
<-
subset
(
sc10x
,
idents
=
c
(
"FMSt"
))
res
<-
c
(
seq
(
0.1
,
0.5
,
0.1
),
0.75
,
seq
(
1
,
5
,
1
))
try
({
results
<-
scPC
(
sc10x.EpiFMSt
,
pc
=
100
,
hpc
=
0.9
,
file
=
"EpiFMSt"
,
print
=
"2"
)
sc10x.EpiFMSt
<-
results
[[
1
]]
pc.use.EpiFMSt
<-
results
[[
2
]]
rm
(
results
)
sc10x.EpiFMSt
<-
scCluster
(
sc10x.EpiFMSt
,
res
=
res
,
red
=
"pca"
,
dim
=
pc.use.EpiFMSt
,
print
=
"2"
,
folder
=
"EpiFMSt"
)
})
sc10x.se.EpiFMSt
<-
as.SingleCellExperiment
(
sc10x.EpiFMSt
)
common
<-
intersect
(
rownames
(
sc10x.se.EpiFMSt
),
rownames
(
scDWSpr.se
))
scDWSpr.se
<-
scDWSpr.se
[
common
,]
sc10x.se.EpiFMSt
<-
sc10x.se.EpiFMSt
[
common
,]
rm
(
common
)
singler.EpiFMSt
<-
SingleR
(
sc10x.se.EpiFMSt
,
ref
=
scDWSpr.se
,
method
=
"cluster"
,
clusters
=
sc10x.se.EpiFMSt
$
integrated_snn_res.1
,
labels
=
scDWSpr.se
$
pops
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x.EpiFMSt
$
hu_pops
<-
singler.EpiFMSt
$
first.labels
[
match
(
sc10x.se.EpiFMSt
$
integrated_snn_res.1
,
singler.EpiFMSt
@
rownames
)]
#singler.EpiFMSt <- SingleR(sc10x.se.EpiFMSt,ref=scDWSpr.se,labels=scDWSpr.se$pops,BPPARAM=MulticoreParam(workers=10))
#sc10x.EpiFMSt$hu_pops <- singler.EpiFMSt$labels
Idents
(
sc10x.EpiFMSt
)
<-
"hu_pops"
#sc10x.nonleu$scDWSpr[sc10x.nonleu$scDWSpr == "OE2"] <- "Hillock"
#sc10x.nonleu$scDWSpr[sc10x.nonleu$scDWSpr == "OE1"] <- "Club"
sc10x.EpiFMSt
$
hu_pops
<-
factor
(
sc10x.EpiFMSt
$
hu_pops
)
DimPlot
(
sc10x.EpiFMSt
,
group.by
=
"hu_pops"
,
reduction
=
"umap"
,
label
=
TRUE
,
repel
=
TRUE
)
+
theme
(
legend.position
=
"none"
)
Idents
(
sc10x.EpiFMSt
)
<-
"hu_pops"
sc10x.epi
<-
subset
(
sc10x.EpiFMSt
,
idents
=
levels
(
sc10x.EpiFMSt
)[
levels
(
sc10x.EpiFMSt
)
%in%
c
(
"BE"
,
"LE"
,
"Club"
,
"Hillock"
)])
sc10x.fmst
<-
subset
(
sc10x.EpiFMSt
,
idents
=
levels
(
sc10x.EpiFMSt
)[
levels
(
sc10x.EpiFMSt
)
%in%
c
(
"Fib"
,
"SM"
)])
#sc10x.st <- subset(sc10x.EpiFMSt,idents=setdiff(levels(sc10x.EpiFMSt),c("BE","LE","Club","Hillock")))
if
(
opt
$
o
==
"pr"
&&
opt
$
s
==
"hu"
){
sc10x.se.epi
<-
as.SingleCellExperiment
(
sc10x.epi
)
scDWSpr.se.epi
<-
scDWSpr.se
[,
scDWSpr.se
$
Lin
==
"Epi"
,]
common
<-
intersect
(
rownames
(
sc10x.se.epi
),
rownames
(
scDWSpr.se.epi
))
scDWSpr.se.epi
<-
scDWSpr.se.epi
[
common
,]
sc10x.se.epi
<-
sc10x.se.epi
[
common
,]
rm
(
common
)
sc10x.se.fmst
<-
as.SingleCellExperiment
(
sc10x.fmst
)
scDWSpr.se.fmst
<-
scDWSpr.se
[,
scDWSpr.se
$
Merge_Epi.dws_St.go
%in%
c
(
"Fib"
,
"SM"
),]
common
<-
intersect
(
rownames
(
sc10x.se.fmst
),
rownames
(
scDWSpr.se.fmst
))
scDWSpr.se.fmst
<-
scDWSpr.se.fmst
[
common
,]
sc10x.se.fmst
<-
sc10x.se.fmst
[
common
,]
rm
(
common
)
singler.epi
<-
SingleR
(
sc10x.se.epi
,
ref
=
scDWSpr.se.epi
,
labels
=
scDWSpr.se.epi
$
ident
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x.epi
$
scDWSpr
<-
singler.epi
$
labels
Idents
(
sc10x.epi
)
<-
"scDWSpr"
sc10x.epi
$
scDWSpr
[
sc10x.epi
$
scDWSpr
==
"OE2"
]
<-
"Hillock"
sc10x.epi
$
scDWSpr
[
sc10x.epi
$
scDWSpr
==
"OE1"
]
<-
"Club"
singler.fmst
<-
SingleR
(
sc10x.se.fmst
,
ref
=
scDWSpr.se.fmst
,
labels
=
scDWSpr.se.fmst
$
ident
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x.fmst
$
scDWSpr
<-
singler.fmst
$
labels
Idents
(
sc10x.fmst
)
<-
"scDWSpr"
}
#sc10x.se.leu <- as.SingleCellExperiment(sc10x.leu)
#leu.se <- leu.se[,leu.se$label.main %in% c("DC","B_cell","Neutrophil","T_cells","Monocyte","Macrophage","NK_cell","Neutrophils","CMP","GMP","MEP","Myelocyte","Pre-B_cell_CD34-","Pro-B_cell_CD34+","Pro-Myelocyte","Macrophages","Monocytes","B cells","Eosinophils","T cells","ILC","NK cells","Basophils","Mast cells","Tgd","NKT","B cells, pro","Microglia")]
#common <- intersect(rownames(sc10x.se.leu),rownames(leu.se))
#leu.se <- leu.se[common,]
#sc10x.se.leu <- sc10x.se.leu[common,]
#rm(common)
#singler.leu <- SingleR(sc10x.se.leu,ref=leu.se,labels=leu.se$label.main,BPPARAM=MulticoreParam(workers=10))
#sc10x.leu$leu <- singler.leu$labels
#Idents(sc10x.leu) <- "leu"
#DimPlot(sc10x.leu,group.by="leu",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
#sc10x$pops <- sc10x$lin
#sc10x$pops[names(sc10x.leu$leu)] <- sc10x.leu$leu
#sc10x.epi$pops <- sc10x.epi$lin
#sc10x.fmst$pops <- sc10x.fmst$lin
#sc10x.st$pops <- sc10x.st$lin
#sc10x.leu$pops <- sc10x.leu$leu
if
(
opt
$
o
==
"pr"
&&
opt
$
s
==
"hu"
){
sc10x
$
pops
[
names
(
sc10x.epi
$
scDWSpr
)]
<-
sc10x.epi
$
scDWSpr
sc10x.epi
$
pops
<-
sc10x.epi
$
scDWSpr
sc10x
$
pops
[
names
(
sc10x.fmst
$
scDWSpr
)]
<-
sc10x.fmst
$
scDWSpr
sc10x.fmst
$
pops
<-
sc10x.fmst
$
scDWSpr
sc10x.st
$
pops
[
names
(
sc10x.fmst
$
scDWSpr
)]
<-
sc10x.fmst
$
scDWSpr
sc10x
$
pops
[
names
(
sc10x.leu
$
leu
)]
<-
sc10x.leu
$
leu
sc10x.st
$
pops
[
names
(
sc10x.fmst
$
scDWSpr
)]
<-
sc10x.fmst
$
scDWSpr
}
#DimPlot(sc10x,group.by="pops",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
#sc10x$leu <- "non-Leu"
#sc10x$leu[names(sc10x.leu$leu)] <- sc10x.leu$leu
#DimPlot(sc10x,group.by="leu",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
try
({
results
<-
scPC
(
sc10x.epi
,
pc
=
100
,
hpc
=
0.9
,
file
=
"epi"
,
print
=
"2"
)
sc10x.epi
<-
results
[[
1
]]
...
...
@@ -206,7 +100,6 @@ try({
rm
(
results
)
sc10x.epi
<-
scCluster
(
sc10x.epi
,
res
=
res
,
red
=
"pca"
,
dim
=
pc.use.epi
,
print
=
"2"
,
folder
=
"epi"
)
})
try
({
results
<-
scPC
(
sc10x.fmst
,
pc
=
100
,
hpc
=
0.9
,
file
=
"fmst"
,
print
=
"2"
)
sc10x.fmst
<-
results
[[
1
]]
...
...
@@ -215,26 +108,41 @@ try({
sc10x.fmst
<-
scCluster
(
sc10x.fmst
,
res
=
res
,
red
=
"pca"
,
dim
=
pc.use.fmst
,
print
=
"2"
,
folder
=
"fmst"
)
})
#try({
# results <- scPC(sc10x.st,pc=100,hpc=0.9,file="st",print="2")
# sc10x.st <- results[[1]]
# pc.use.st <- results[[2]]
# rm(results)
# sc10x.st <- scCluster(sc10x.st,res=res,red="pca",dim=pc.use.st,print="2",folder="st")
#})
#try({
# results <- scPC(sc10x.leu,pc=100,hpc=0.9,file="leu",print="2")
# sc10x.leu <- results[[1]]
# pc.use.leu <- results[[2]]
# rm(results)
# sc10x.leu <- scCluster(sc10x.leu,res=res,red="pca",dim=pc.use.leu,print="2",folder="leu")
#})
if
(
opt
$
r
==
"epi"
){
sc10x.se.epi
<-
as.SingleCellExperiment
(
sc10x.epi
,
assay
=
"RNA"
)
common
<-
intersect
(
rownames
(
sc10x.se.epi
),
rownames
(
scDWSpr.se
))
scDWSpr.se
<-
scDWSpr.se
[
common
,]
sc10x.se.epi
<-
sc10x.se.epi
[
common
,]
rm
(
common
)
singler.epi
<-
SingleR
(
sc10x.se.epi
,
ref
=
scDWSpr.se
,
method
=
"cluster"
,
clusters
=
sc10x.se.epi
$
integrated_snn_res.0.1
,
labels
=
scDWSpr.se
$
pops
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x.epi
$
hu_pops
<-
singler.epi
$
labels
[
match
(
sc10x.se.epi
$
integrated_snn_res.0.1
,
singler.epi
@
rownames
)]
#singler.epi <- SingleR(sc10x.se.epi,ref=scDWSpr.se,labels=scDWSpr.se$pops,BPPARAM=MulticoreParam(workers=10))
#sc10x.epi$hu_pops <- singler.epi$labels
Idents
(
sc10x.epi
)
<-
"hu_pops"
sc10x.epi
$
hu_pops
<-
factor
(
sc10x.epi
$
hu_pops
)
#DimPlot(sc10x.epi,group.by="hu_pops",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
sc10x.fmst
$
hu_pops
<-
sc10x.fmst
$
lin
}
else
if
(
opt
$
r
==
"fmst"
){
sc10x.se.fmst
<-
as.SingleCellExperiment
(
sc10x.fmst
,
assay
=
"RNA"
)
common
<-
intersect
(
rownames
(
sc10x.se.fmst
),
rownames
(
scDWSpr.se
))
scDWSpr.fmse
<-
scDWSpr.se
[
common
,]
sc10x.se.fmst
<-
sc10x.se.fmst
[
common
,]
rm
(
common
)
singler.fmst
<-
SingleR
(
sc10x.se.fmst
,
ref
=
scDWSpr.se
,
method
=
"cluster"
,
clusters
=
sc10x.se.fmst
$
integrated_snn_res.0.1
,
labels
=
scDWSpr.se
$
pops
,
BPPARAM
=
MulticoreParam
(
workers
=
10
))
sc10x.fmst
$
hu_pops
<-
singler.fmst
$
labels
[
match
(
sc10x.se.fmst
$
integrated_snn_res.0.1
,
singler.fmst
@
rownames
)]
#singler.fmst <- SingleR(sc10x.se.fmst,ref=scDWSpr.se,labels=scDWSpr.se$pops,BPPARAM=MulticoreParam(workers=10))
#sc10x.fmst$hu_pops <- singler.fmst$labels
Idents
(
sc10x.fmst
)
<-
"hu_pops"
sc10x.fmst
$
hu_pops
<-
factor
(
sc10x.fmst
$
hu_pops
)
#DimPlot(sc10x.fmst,group.by="hu_pops",reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
sc10x.epi
$
hu_pops
<-
sc10x.epi
$
lin
}
Idents
(
sc10x
)
<-
"lin"
sc10x
$
pops
<-
Idents
(
sc10x
)
levels
(
sc10x
$
pops
)
<-
c
(
levels
(
sc10x
$
pops
),
levels
(
sc10x.EpiFMSt
$
hu_pops
))
sc10x
$
pops
[
names
(
sc10x.EpiFMSt
$
hu_pops
)]
<-
sc10x.EpiFMSt
$
hu_pops
Idents
(
sc10x.epi
)
<-
"hu_pops"
Idents
(
sc10x.fmst
)
<-
"hu_pops"
if
(
!
dir.exists
(
paste0
(
"./analysis/vis/singler"
))){
dir.create
(
paste0
(
"./analysis/vis/singler"
))
...
...
@@ -245,39 +153,35 @@ postscript(paste0("./analysis/vis/singler/UMAP_all.lin.eps"))
print
(
plot
)
dev.off
()
Idents
(
sc10x
)
<-
"pops"
Idents
(
sc10x.EpiFMSt
)
<-
"hu_pops"
Idents
(
sc10x.epi
)
<-
"hu_pops"
Idents
(
sc10x.fmst
)
<-
"hu_pops"
#Idents(sc10x.st) <- "pops"
#Idents(sc10x.leu) <- "leu"
plot
<-
DimPlot
(
sc10x
,
reduction
=
"umap"
,
label
=
TRUE
,
repel
=
TRUE
)
+
theme
(
legend.position
=
"none"
)
postscript
(
paste0
(
"./analysis/vis/singler/UMAP_all.eps"
))
print
(
plot
)
dev.off
()
for
(
i
in
c
(
"EpiFMSt"
,
"epi"
,
"fmst"
)){
for
(
i
in
c
(
"epi"
,
"fmst"
)){
plot
<-
DimPlot
(
get
(
paste0
(
"sc10x."
,
i
)),
reduction
=
"umap"
,
label
=
TRUE
,
repel
=
TRUE
)
+
theme
(
legend.position
=
"none"
)
postscript
(
paste0
(
"./analysis/vis/singler/UMAP_"
,
i
,
".eps"
))
print
(
plot
)
dev.off
()
}
plot
<-
plotScoreHeatmap
(
singler.lin
,
show.labels
=
TRUE
,
annotation_col
=
data.frame
(
ID
=
sc10x
$
lin
,
row.names
=
rownames
(
singler.lin
)))
labs
<-
singler.lin
$
labels
labs
<-
replace
(
labs
,
labs
==
"Epithelial cells"
,
"Epi"
)
labs
<-
replace
(
labs
,
labs
%in%
c
(
"Stromal cells"
,
"Fibroblasts"
),
"FMSt"
)
labs
<-
replace
(
labs
,
labs
==
"Endothelial cells"
,
"Endo"
)
labs
<-
replace
(
labs
,
labs
%in%
c
(
"Macrophages"
,
"Monocytes"
,
"B cells"
,
"DC"
,
"Eosinophils"
,
"Neutrophils"
,
"T cells"
,
"ILC"
,
"NK cells"
,
"Basophils"
,
"Mast cells"
,
"Tgd"
,
"NKT"
,
"B cells, pro"
,
"Microglia"
),
"Leu"
)
plot
<-
plotScoreHeatmap
(
singler.lin
,
show.labels
=
FALSE
,
annotation_col
=
data.frame
(
ID
=
labs
,
row.names
=
rownames
(
singler.lin
)))
postscript
(
paste0
(
"./analysis/vis/singler/ScoreHeatmap_lin.norm.eps"
))
print
(
plot
)
dev.off
()
rm
(
labs
)
plot
<-
plotScoreHeatmap
(
singler.EpiFMSt
,
show.labels
=
TRUE
,
show.pruned
=
TRUE
,
annotation_col
=
data.frame
(
first.label
=
singler.EpiFMSt
$
first.labels
,
row.names
=
rownames
(
singler.EpiFMSt
)))
postscript
(
paste0
(
"./analysis/vis/singler/ScoreHeatmap_EpiFMSt.norm.eps"
))
print
(
plot
)
dev.off
()
plot
<-
plotScoreHeatmap
(
singler.EpiFMSt
,
show.labels
=
TRUE
,
show.pruned
=
TRUE
,
annotation_col
=
data.frame
(
first.label
=
singler.EpiFMSt
$
first.labels
,
row.names
=
rownames
(
singler.EpiFMSt
)),
normalize
=
FALSE
)
postscript
(
paste0
(
"./analysis/vis/singler/ScoreHeatmap_EpiFMSt.eps"
))
print
(
plot
)
dev.off
()
if
(
opt
$
r
==
"epi"
){
plot
<-
plotScoreHeatmap
(
singler.epi
,
show.labels
=
FALSE
,
show.pruned
=
FALSE
,
annotation_col
=
data.frame
(
ID
=
singler.epi
$
labels
,
row.names
=
rownames
(
singler.epi
)))
postscript
(
paste0
(
"./analysis/vis/singler/ScoreHeatmap_epi.norm.eps"
))
print
(
plot
)
dev.off
()
}
else
if
(
opt
$
r
==
"fmst"
){
plot
<-
plotScoreHeatmap
(
singler.fmst
,
show.labels
=
FALSE
,
show.pruned
=
FALSE
,
annotation_col
=
data.frame
(
ID
=
singler.fmst
$
labels
,
row.names
=
rownames
(
singler.fmst
)))
postscript
(
paste0
(
"./analysis/vis/singler/ScoreHeatmap_fmst.norm.eps"
))
print
(
plot
)
dev.off
()
}
rm
(
list
=
ls
(
pattern
=
"^sc10x.se"
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment