sc-TissueMapper_functions.R 42.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#sc-TissueMapper
#Author: Gervaise H. Henry
#Email: gervaise.henry@utsouthwestern.edu
#Lab: Strand Lab, Deparment of Urology, University of Texas Southwestern Medical Center


scFolders <- function(){
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
11
12
13
14
15
16
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
  if (!dir.exists("./analysis/qc/cutoffs/")){
    dir.create("./analysis/qc/cutoffs/")
  }
17
18
19
20
21
22
23
24
25
26
27
28
  if (!dir.exists("./analysis/qc/cellcycle")){
    dir.create("./analysis/qc/cellcycle")
  }
  if (!dir.exists("./analysis/vis")){
    dir.create("./analysis/vis")
  }
  if (!dir.exists("./analysis/score_id")){
    dir.create("./analysis/score_id")
  }
  if (!dir.exists("./analysis/cor")){
    dir.create("./analysis/cor")
  }
29
30
31
32
33
34
  if (!dir.exists("./analysis/shiny")){
    dir.create("./analysis/shiny")
  }
  if (!dir.exists("./analysis/shiny")){
    dir.create("./analysis/shiny")
  }
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  for (i in c("raw","id","id.epi","id.fmst","id.st","id.leu")){
    if (!dir.exists(paste0("./analysis/shiny/",i))){
      dir.create(paste0("./analysis/shiny/",i))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/filtered_feature_bc_matrix"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/filtered_feature_bc_matrix"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/clustering"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/clustering"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/diffexp"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/diffexp"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/pca"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/pca"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/pca/10_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/pca/10_components"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/tsne"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/tsne"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/tsne/2_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/tsne/2_components"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/umap"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/umap"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/umap/2_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/umap/2_components"))
    }
72
  }
73
74
75
}


Gervaise Henry's avatar
Gervaise Henry committed
76
scLoad <- function(p,cellranger=3,aggr=TRUE,ncell=0,nfeat=0){
77
78
79
80
  #Load and prefilter filtered_gene_bc_matrices_mex output from cellranger
  
  #Inputs:
  #p = project name
81
82
  #cellranger cellranger version number used for count/aggr, 2 or 3
  #aggr = if the samples are already aggregated, TRUE if useing the output of aggr, FALSE if using outputs of each count
83
84
  
  #Outputs:
85
86
  #sc10x = Seurat object list
  #sc10x.groups = group labels for each sample
87
88
  
  
89
90
91
92
93
94
95
  sc10x.groups <- read_csv(paste0("./analysis/DATA/",p,"-demultiplex.csv"))
  
  
  #Load filtered_gene_bc_matrices output from cellranger
  sc10x.data <- list()
  sc10x <- list()
  if (aggr==TRUE){
96
    if (cellranger==2){
97
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_gene_bc_matrices_mex/"))
98
    } else {
99
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_feature_bc_matrix/"))
100
    }
101
    sc10x[aggr] <- new("seurat",raw.data=sc10x.data[aggr])
102
  } else {
103
104
105
106
107
108
    for (i in sc10x.groups$Samples){
      if (cellranger==2){
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_gene_bc_matrices/"))
      } else {
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_feature_bc_matrix/"))
      }
Gervaise Henry's avatar
Gervaise Henry committed
109
      sc10x[i] <- CreateSeuratObject(counts=sc10x.data[[i]],project=p,min.cells=ncell,min.features=nfeat)
110
      sc10x[[i]]$samples <- i
111
    }
112
113
  }
  
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  # #Label sample names from aggregation_csv.csv
  # if (sub==FALSE){
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation_csv.csv")
  #   } else {
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation.csv")
  #   }
  # } else {
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation_csv.csv"))
  #   } else {
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation.csv"))
  #   }
  # }
  # cell.codes <- as.data.frame(sc10x@raw.data@Dimnames[[2]])
  # colnames(cell.codes) <- "barcodes"
  # rownames(cell.codes) <- cell.codes$barcodes
  # cell.codes$lib.codes <- as.factor(gsub(pattern=".+-",replacement="",cell.codes$barcodes))
  # cell.codes$samples <- sc10x.aggr$library_id[match(cell.codes$lib.codes,as.numeric(rownames(sc10x.aggr)))]
  # sc10x <- CreateSeuratObject(counts=sc10x.data,project=p,assay="RNA",min.cells=mc,min.features=mg,meta.data=cell.codes["samples"])
  # 
  # #Create groups found in demultiplex.csv
  # for (i in 2:ncol(sc10x.demultiplex)){
  #   Idents(sc10x) <- "samples"
  #   merge.cluster <- apply(sc10x.demultiplex[,i],1,as.character)
  #   merge.cluster[merge.cluster==1] <- colnames(sc10x.demultiplex[,i])
  #   
  #   Idents(sc10x) <- plyr::mapvalues(x=Idents(sc10x),from=sc10x.demultiplex$Samples,to=merge.cluster)
  #   sc10x@meta.data[,colnames(sc10x.demultiplex[,i])] <- Idents(sc10x)
  # }
  
  
  results <- list(
    sc10x=sc10x,
    sc10x.groups=sc10x.groups
  )
  return(results)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
}


scSubset <- function(sc10x,i="ALL",g="ALL"){
  #Subset cells based on an identity
  
  #Inputs:
  #sc10x = seruat object
  #i = identity to use
  #g = group to subset by
  
  #Outputs:
  #Seurat object
  
  
166
  Idents(sc10x) <- i
167
168
  sc10x.sub <- subset(x=sc10x,idents=g)
  
169
  
170
171
172
173
  return(sc10x.sub)
}


174
scQC <- function(sc10x,sp="hu",feature="nFeature_RNA"){
175
176
177
178
179
180
181
  #QC and filter Seurat object
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
182
  #result[1] = filtered Seurat object
183
184
185
186
187
188
  #result[2] = raw cell count
  #result[3] = raw gene count
  #result[4] = filtered cell count
  #result[5] = filtered gene count
  
  
189
  #Calculate percent mitochondrea
190
  if (sp=="hu"){
191
    mito.pattern <- "^MT-"
192
    ribo.pattern <- "^(RPL|RPS)"
193
194
  } else if (sp=="mu"){
    mito.pattern <- "^mt-"
195
    ribo.pattern <- "^(Rpl|Rps)"
196
  }
197
198
199
  for (i in names(sc10x)){
    sc10x.temp <- sc10x[[i]]
    sc10x.temp[["percent.mito"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=mito.pattern)
200
    sc10x.temp[["percent.ribo"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=ribo.pattern)
201
    #sc10x.temp <- subset(sc10x.temp,cell=names(which(is.na(sc10x.temp$percent.mito))),invert=TRUE)
202
    sc10x[i] <- sc10x.temp
203
  }
204
  
205
206
  #Calculate cutoffs
  thresh <- list()
Gervaise Henry's avatar
Gervaise Henry committed
207
208
209
  #h <- list()
  #cells.remove <- list()
  #sc10x.temp <- list()
210
  for (i in feature){
Gervaise Henry's avatar
Gervaise Henry committed
211
    if (i == "nFeature_RNA"){
212
213
214
215
216
217
218
219
220
      h <- list()
      cells.remove <- list()
      sc10x.temp <- list()
      for (j in names(sc10x)){
        h[[i]] <- hist(data.frame(sc10x[[j]][[i]])$nFeature_RNA,breaks=10,plot=FALSE)
        cutoff.temp <- mean(c(h[[i]]$mids[which.max(h[[i]]$counts)],h[[i]]$mids[-which.max(h[[i]]$counts)][which.max(h[[i]]$counts[-which.max(h[[i]]$counts)])]))
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][["nFeature_RNA"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=setdiff(colnames(sc10x[[j]]),cells.remove[[j]]))
      }
Gervaise Henry's avatar
Gervaise Henry committed
221
222
    thresh[[i]] <- scThresh(sc10x.temp,feature=i)
    }
223
    if (i == "percent.mito"){
Gervaise Henry's avatar
Gervaise Henry committed
224
225
226
227
228
      h <- list()
      cells.remove <- list()
      sc10x.temp <- list()
      thresh.l <- list()
      cutoff.l.mito <- list()
229
230
      for (j in names(sc10x)){
        cutoff.l.mito[[j]] <- NULL
Gervaise Henry's avatar
Gervaise Henry committed
231
        h[[i]] <- hist(data.frame(sc10x[[j]][[i]])$percent.mito,breaks=100,plot=FALSE)
232
233
        cutoff.temp <- mean(c(h[[i]]$mids[which.max(h[[i]]$counts)],h[[i]]$mids[-which.max(h[[i]]$counts)][which.max(h[[i]]$counts[-which.max(h[[i]]$counts)])]))
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][["percent.mito"]])[sc10x[[j]][[i]][,1] > cutoff.temp])
234
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=setdiff(colnames(sc10x[[j]]),cells.remove[[j]]))
235
        thresh.l[[i]] <- scThresh(sc10x.temp,feature=i,sub="lower")
Gervaise Henry's avatar
Gervaise Henry committed
236
237
238
        #cutoff.l.mito[[j]] <- thresh.l[[i]][[j]]$threshold[thresh.l[[i]][[j]]$method=="Triangle"]
        cutoff.l.mito[[j]] <- thresh.l[[i]][[j]]$threshold[thresh.l[[i]][[j]]$method=="RenyiEntropy"]
        thresh[[i]] <- scThresh(sc10x,feature=i)
239
      }
240
    }
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    if (i == "percent.ribo"){
      h <- list()
      cells.remove <- list()
      sc10x.temp <- list()
      thresh.l <- list()
      cutoff.l.ribo <- list()
      for (j in names(sc10x)){
        cutoff.l.ribo[[j]] <- NULL
        h[[i]] <- hist(data.frame(sc10x[[j]][[i]])$percent.ribo,breaks=100,plot=FALSE)
        thresh[[i]] <- scThresh(sc10x,feature=i)
      }
    }
    if (i == "nCount_RNA"){
      thresh[[i]] <- scThresh(sc10x,feature=i)
    }
256
257
258
259
260
261
  }
  
  #Plot raw stats
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
262
  max.rb <- 0
263
264
265
266
267
268
269
270
271
272
  for (i in names(sc10x)){
    if (max.ct < max(sc10x[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x[[i]][["percent.mito"]])){
      max.mt <- max(sc10x[[i]][["percent.mito"]])
    }
273
274
275
    if (max.rb < max(sc10x[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x[[i]][["percent.ribo"]])
    }
276
277
278
279
  }
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
280
  max.rb <- max.rb*1.1
281
  cells.remove <- list()
282
  for (i in feature){
283
284
285
286
287
288
289
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
290
291
    } else if (i == "percent.ribo"){
      max.y <- max.rb
292
293
294
295
296
297
298
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x)){
      sc10x.temp <- sc10x[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
299
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
300
        if (i == "nFeature_RNA"){
Gervaise Henry's avatar
Gervaise Henry committed
301
          #cutoff.l <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="MinErrorI"]
302
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
Gervaise Henry's avatar
Gervaise Henry committed
303
304
          cutoff.l <- 200
          #cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Huang2"]
305
        } else if (i == "percent.mito") {
Gervaise Henry's avatar
Gervaise Henry committed
306
          #cutoff.l <- cutoff.l.mito[[j]]
307
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Triangle"]
Gervaise Henry's avatar
Gervaise Henry committed
308
          cutoff.l <- 0
309
310
311
312
313
314
        } else if (i == "percent.ribo") {
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
          cutoff.l <- 0
        } else if (i == "nCount_RNA") {
          cutoff.l <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Triangle"]
          cutoff.h <- max(sc10x[[j]][[i]])
315
316
        }
        plots.v[[j]] <- plots.v[[j]]+geom_hline(yintercept=cutoff.l,size=0.5,color="red")+geom_hline(yintercept=cutoff.h,size=0.5,color="red")
317
318
319
320
321
322
323
        if (i != "nCount_RNA"){
          densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        } else {
          densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        }
324
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][[i]])[sc10x[[j]][[i]][,1] < cutoff.l | sc10x[[j]][[i]][,1] > cutoff.h])
325
      }
Gervaise Henry's avatar
Gervaise Henry committed
326
      ggsave(paste0("./analysis/qc/Violin_qc.raw.",i,".",j,".eps"),plot=plots.v[[j]])
327
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
Gervaise Henry's avatar
Gervaise Henry committed
328
329
        ggsave(paste0("./analysis/qc/Plot_qc.raw.",i,".",j,".eps"),plot=plots.s[[j]])
      }
330
    }
331
  }
332
  
333
334
335
336
337
338
339
340
341
  #Record cell/gene counts pre and post filtering
  counts.cell.raw <- list()
  counts.gene.raw <- list()
  sc10x.sub <- list()
  counts.cell.filtered <- list()
  counts.gene.filtered <- list()
  for (i in names(sc10x)){
    counts.cell.raw[i] <- ncol(GetAssayData(object=sc10x[[i]],slot="counts"))
    counts.gene.raw[i] <- nrow(GetAssayData(object=sc10x[[i]],slot="counts"))
342
    sc10x.sub[[i]] <- subset(sc10x[[i]],cells=setdiff(colnames(sc10x[[i]]),cells.remove[[i]]))
343
344
345
    counts.cell.filtered[i] <- ncol(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
    counts.gene.filtered[i] <- nrow(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
  }
346
347
  
  #Plot filtered stats
348
349
350
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
351
  max.rb <- 0
352
353
354
355
356
357
358
359
360
361
  for (i in names(sc10x)){
    if (max.ct < max(sc10x.sub[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x.sub[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x.sub[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x.sub[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x.sub[[i]][["percent.mito"]])){
      max.mt <- max(sc10x.sub[[i]][["percent.mito"]])
    }
362
363
364
    if (max.rb < max(sc10x.sub[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x.sub[[i]][["percent.ribo"]])
    }
365
  }
366
367
368
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
369
370
  max.rb <- max.rb*1.1
  for (i in feature){
371
372
373
374
375
376
377
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
378
379
    } else if (i == "percent.ribo"){
      max.y <- max.rb
380
381
382
383
384
385
386
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x.sub)){
      sc10x.temp <- sc10x.sub[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
387
      if (i != "nCount_RNA"){
388
        densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
389
390
391
392
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
      } else {
        densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
393
      }
394
      ggsave(paste0("./analysis/qc/Violin_qc.filtered.",i,".",j,".eps"),plot=plots.v[[j]])
395
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
396
397
398
        ggsave(paste0("./analysis/qc/Plot_qc.filtered.",i,".",j,".eps"),plot=plots.s[[j]])
      }

399
400
401
    }
  }
  
402
403
404
405
406
407
408
409
410
411
412
  
  results <- list(
    sc10x=sc10x.sub,
    counts.cell.raw=counts.cell.raw,
    counts.gene.raw=counts.gene.raw,
    counts.cell.filtered=counts.cell.filtered,
    counts.gene.filtered=counts.gene.filtered
  )
  return(results)
}

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
scThresh <- function(sc10x,feature,sub=FALSE){
  #Calculate thresholds and cutoffs
  
  #Inputs:
  #sc10x = Seruat object
  #feature = feature to threshold
  #sub = Subfolder to save output files
  
  #Outputs:
  #result = Threshold data
  
  
  #Make folders
  if (sub==FALSE){
    folder <- "./analysis/qc/cutoffs/"
  } else {
    folder <- paste0("./analysis/qc/cutoffs/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }
433
434
  }
  
435
436
437
438
439
440
441
  #Calculate range of histogram based threholding and manually select methods for cutoffs
  scale <- list()
  scale.scaled <- list()
  h <- list()
  thresh <-list()
  cutoff.l <- list()
  cutoff.h <- list()
442
  thresh_methods <- c("IJDefault","Huang","Huang2","IsoData","Li","Mean","MinErrorI","Moments","Otsu","Percentile","RenyiEntropy","Shanbhag","Triangle")#,"Intermodes"
443
444
445
446
  for (i in names(sc10x)){
    scale[[i]] <- data.frame(Score=sc10x[[i]][[feature]])
    colnames(scale[[i]]) <- "Score"
    scale[[i]] <- data.frame(Score=scale[[i]]$Score[!is.na(scale[[i]]$Score)])
Gervaise Henry's avatar
Gervaise Henry committed
447
448
449
    scale.scaled[[i]] <- as.integer((scale[[i]]$Score-min(scale[[i]]$Score))/(max(scale[[i]]$Score)-min(scale[[i]]$Score))*360)
    #scale.scaled[[i]] <- as.integer(scales::rescale(scale[[i]]$Score,to=c(0,1))*360)
    h[[i]] <- hist(scale[[i]]$Score,breaks=100,plot=FALSE)
Gervaise Henry's avatar
Gervaise Henry committed
450
    thresh[[i]] <- purrr::map_chr(thresh_methods,~auto_thresh(scale.scaled[[i]],.)) %>% tibble(method = thresh_methods, threshold = .)
451
    thresh[[i]]$threshold <- as.numeric(thresh[[i]]$threshold)
Gervaise Henry's avatar
Gervaise Henry committed
452
453
    thresh[[i]]$threshold <- ((thresh[[i]]$threshold/360)*(max(scale[[i]]$Score)-min(scale[[i]]$Score)))+min(scale[[i]]$Score)
    #thresh[[i]] <- thresh[[i]] %>% mutate(threshold=(scales::rescale(as.numeric(threshold)/360,to=range(scale[[i]]$Score))))
454
455
456
457
458
459
460
461
462
    postscript(paste0(folder,"Hist_qc.",i,".",feature,".eps"))
    plot(h[[i]],main=paste0("Histogram of ",feature," of sample ",i),xlab=feature)
    abline(v=thresh[[i]]$threshold)
    mtext(thresh[[i]]$method,side=1,line=2,at=thresh[[i]]$threshold,cex=0.5)
    dev.off()
  }
  
  
  return(thresh)
463
}
464

465
scCellCycle <- function(sc10x,sub=FALSE,sp="hu"){
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
  #Runs Seurat based PCA analysis for cell cycle ID
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = s genes
  #results[3] = g2m genes
  
  #Make sub-folders if necessary
  if (sub==FALSE){
    folder <- "./analysis/qc/cellcycle/"
  } else {
    folder <- paste0("./analysis/qc/cellcycle/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }}
  
  #score cell cycle
  genes.cc <- readLines(con="./genesets/regev_lab_cell_cycle_genes.txt")
  genes.s <- genes.cc[1:43]
  genes.g2m <- genes.cc[44:97]
  sc10x <- NormalizeData(object=sc10x,verbose=FALSE)
  sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE)
  sc10x <- CellCycleScoring(object=sc10x,s.features=genes.s,g2m.features=genes.g2m,set.ident=TRUE)
  
  #plot cell cycle specific genes
495
496
497
498
499
500
501
  if (sp=="hu"){
    genes=c("PCNA","TOP2A","MCM6","MKI67")
    postscript(paste0(folder,"Violin_cc.Raw.eps"))
    plot <- VlnPlot(object=sc10x,features=genes,ncol=2,pt.size=1)
    plot(plot)
    dev.off()
  }
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
  
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Raw.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  # gc()
  # sc10x <- ScaleData(object=sc10x,vars.to.regress=c("S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=TRUE)
  # gc()
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Norm.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  
  results <- list(
    sc10x=sc10x,
    genes.s=genes.s,
    genes.g2m=genes.g2m
  )
  return(results)
}


526
scPC <- function(sc10x,pc=50,hpc=0.9,file="pre.stress",print="tsne"){
527
528
529
530
531
532
533
534
535
536
537
538
539
540
  #Scale Seurat object & calculate # of PCs to use
  
  #Inputs:
  #sc10x = Seruat object
  #pc = number of PCs to cacluate
  #hpc = max variance cutoff for PCs to use"
  #file = file for output
  
  #Outputs:
  #result[1] = Seurat object
  #result[2] = # of PCs to use
  
  #Run PCA
  Idents(object=sc10x) <- "ALL"
541
  sc10x <- RunPCA(object=sc10x,npcs=pc,verbose=FALSE,assay="integrated")
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
  
  #Calculate PCs to use
  pc.use <- sc10x[["pca"]]@stdev^2
  pc.use <- pc.use/sum(pc.use)
  pc.use <- cumsum(pc.use)
  pc.use <- min(which(pc.use>=hpc))
  
  postscript(paste0("./analysis/qc/Plot_PCElbow_",file,".eps"))
  plot <- ElbowPlot(object=sc10x,ndims=pc)
  plot <- plot+geom_vline(xintercept=pc.use,size=1,color="red")
  plot(plot)
  dev.off()
  
  results <- list(
    sc10x=sc10x,
    pc.use=pc.use
  )
  return(results)
}


563
564
scCCA <-  function(sc10x.l){
  for (i in 1:length(sc10x.l)){
565
    #sc10x.l[[i]] <- NormalizeData(sc10x.l[[i]],verbose=FALSE)
566
    gc()
567
568
    #sc10x.l[[i]] <- ScaleData(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose = FALSE)
    sc10x.l[[i]] <- SCTransform(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,assay="RNA")
569
    gc()
570
    #sc10x.l[[i]] <- FindVariableFeatures(sc10x.l[[i]],selection.method="vst",nfeatures=2000,verbose=FALSE)
571
572
  }
  
573
574
  sc10x.features <- SelectIntegrationFeatures(object.list=sc10x.l,nfeatures=3000)
  sc10x.l <- PrepSCTIntegration(object.list=sc10x.l,anchor.features=sc10x.features,verbose=FALSE)
575
576
577
578

  sc10x.l <- lapply(sc10x.l,FUN=function(x) { RunPCA(x,features=sc10x.features,verbose=FALSE) })
  
  sc10x.anchors <- FindIntegrationAnchors(object.list=sc10x.l,normalization.method="SCT",anchor.features=sc10x.features,verbose=FALSE,reduction="rpca",dims=1:30)
579
  sc10x <- IntegrateData(anchorset=sc10x.anchors,normalization.method="SCT",verbose=FALSE)
580
  
581
582
583
584
585
586
  #sc10x <- FindIntegrationAnchors(object.list=sc10x.l,dims=1:30,scale=FALSE)
  #sc10x <- IntegrateData(anchorset=sc10x,dims=1:30)
  
  #gc()
  #sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE,assay="integrated")
  #gc()
587
  
588
  gc()
589
  sc10x <- SCTransform(sc10x,vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,return.only.var.genes=FALSE,assay="RNA")
590
  gc()
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
  
  return(sc10x)
}


scCluster <- function(sc10x,res=0.1,red="pca",dim,print="tsne",folder=FALSE){
  #Cluster Seurat object and produce visualizations
  
  #Inputs:
  #sc10x = Seruat object
  #res = resolution to calculate clustering
  #red = rediction type to use for clustering
  #dim = number of dimentions to use for display
  #print = dimentionality reduction to use for display
  #folder = folder for output
  
  #Outputs:
  #result = Seurat object
  
  #Create subfolder if necessary
  if (folder==FALSE){
    sub <- ""
  } else {
    if (!dir.exists(paste0("./analysis/vis/",folder))){
      dir.create(paste0("./analysis/vis/",folder))
    }
    sub <- paste0(folder,"/")
    
  }
  
621
622
  DefaultAssay(sc10x) <- "integrated"

623
  #Calculste Vis
624
625
  sc10x <- RunTSNE(sc10x,dims=1:dim,reduction="pca",assay="integrated")
  sc10x <- RunUMAP(sc10x,dims=1:dim,reduction="pca",assay="integrated")
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
  
  sc10x <- FindNeighbors(sc10x,reduction=red,verbose=FALSE)
  
  for (i in res){
    sc10x <- FindClusters(sc10x,resolution=i,verbose=FALSE)
    
    plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      print(print2)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      print(print3)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,ncol=1)
      dev.off()
    }}
  
  plot1 <- DimPlot(sc10x,reduction="pca",group.by="samples")
  plot2 <- DimPlot(sc10x,reduction="tsne",group.by="samples")
  plot3 <- DimPlot(sc10x,reduction="umap",group.by="samples")
  legend <- cowplot::get_legend(plot1)
663
  
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",sub,"tSNE_samples.eps"))
    grid.arrange(plot2,legend,ncol=1)
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",sub,"UMAP_samples.eps"))
    grid.arrange(plot3,legend,ncol=1)
    dev.off()
  } else if (print=="2"){
    plot2 <- plot2+theme(legend.position="none")
    plot3 <- plot3+theme(legend.position="none")
    postscript(paste0("./analysis/vis/",sub,"2Vis_samples.eps"))
    grid.arrange(plot2,plot3,legend,ncol=1)
    dev.off()
  } else if (print=="3"){
    plot1 <- plot1+theme(legend.position="none")
    plot2 <- plot2+theme(legend.position="none")
    plot3 <- plot3+theme(legend.position="none")
    postscript(paste0("./analysis/vis/",sub,"3Vis_samples.eps"))
    grid.arrange(plot1,plot2,plot3,legend,ncol=1)
    dev.off()
  }
686
687

  DefaultAssay(sc10x) <- "SCT"
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
  
  return(sc10x)
}


scScore <- function(sc10x,score,geneset,cut.pt=0.9,anchor=FALSE){
  #Runs custom PCA analysis for stress ID
  
  #Inputs:
  #sc10x = Seruat object
  #score = name of geneset for scoring
  #geneset = geneset to use for ID
  #cut.pt = % of cells to keep
  
  #Outputs:
  #results[1] = Seurat object (original + score)
  #results[2] = Seurat object (negatively filtered)
  #results[3] = Seurat object (positively filtered)
  
  #Make subdirectory
  if (!dir.exists(paste0("./analysis/score_id/",score))){
    dir.create(paste0("./analysis/score_id/",score))
  }
  if (!dir.exists(paste0("./analysis/vis/",score))){
    dir.create(paste0("./analysis/vis/",score))
  }
  
  #Score geneset
716
  sc10x <- AddModuleScore(object=sc10x,features=geneset,name=score,assay="SCT")
717
718
719
720
  Idents(object=sc10x) <- paste0(score,"1")
  
  #CDF
  cdf <- ecdf(as.numeric(levels(sc10x)))
Gervaise Henry's avatar
Gervaise Henry committed
721
  if (cut.pt == "renyi"){
722
723
724
725
726
727

        h <- hist(data.frame(sc10x[[paste0(score,"1")]])[,paste0(score,"1")],breaks=1000,plot=FALSE)
	cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]][,1] < cutoff.temp]
        sc10x.temp <- subset(sc10x,cells=setdiff(colnames(sc10x),cells.remove))
 
728
    thresh <- list()
729
    thresh[["all"]] <- scThresh(list(all=sc10x.temp),feature=paste0(score,"1"),sub=score)
Gervaise Henry's avatar
Gervaise Henry committed
730
    cut.x <- thresh$all$all$threshold[thresh$all$all$method=="RenyiEntropy"]
731
732
733
734
  } else {
    cut.x <- quantile(cdf,probs=cut.pt)
    cut.x <- unname(cut.x)
  }
735
736
737
738
739
740
741
742
743
744
745
746
747
748
  postscript(paste0("./analysis/score_id/",score,"/CDF_",score,".eps"))
  plot(cdf,main=paste0("Cumulative Distribution of ",score," Score"),xlab=paste0(score," Score"),ylab="CDF")
  abline(v=cut.x,col="red")
  dev.off()  
  
  #KDE
  postscript(paste0("./analysis/score_id/",score,"/Histo_",score,".eps"))
  plot(ggplot(data.frame(Score=as.numeric(levels(sc10x))),aes(x=Score))+geom_histogram(bins=100,aes(y=..density..))+geom_density()+geom_vline(xintercept=cut.x,size=1,color="red")+ggtitle(paste0(score," Score"))+cowplot::theme_cowplot())
  dev.off()
  
  Idents(object=sc10x) <- "ALL"
  predicate <- paste0(score,"1 >= ",cut.x)
  Idents(object=sc10x, cells = WhichCells(object=sc10x,expression= predicate)) <- score
  sc10x[[score]] <- Idents(object=sc10x)
749
  Idents(sc10x) <- score
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
  sc10x.negative <- subset(x=sc10x,idents="ALL")
  sc10x.positive <- subset(x=sc10x,idents=score)
  
  #Generate plots
  postscript(paste0("./analysis/vis/",score,"/3Vis_",score,".eps"))
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("ALL")
  plot2 <- DimPlot(sc10x.negative,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x.positive,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot4 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Negative")
  plot5 <- DimPlot(sc10x.negative,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot6 <- DimPlot(sc10x.positive,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot7 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Positive")
  plot8 <- DimPlot(sc10x.negative,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot9 <- DimPlot(sc10x.positive,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  grid.arrange(plot1,plot2,plot3,plot4,plot5,plot6,plot7,plot8,plot9,ncol=3)
  dev.off()
  
  #Generate violin plot of gene exvpression
  if (anchor!=FALSE){
    postscript(paste0("./analysis/score_id/",score,"/Violin_",score,".eps"))
770
    plot <- VlnPlot(object=sc10x,features=anchor,pt.size=0.1,assay="SCT")
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    plot(plot)
    dev.off()
  }
  
  results <- list(
    sc10x <- sc10x,
    sc10x.negative <- sc10x.negative,
    sc10x.positive <- sc10x.positive
  )
  return(results)
}


scQuSAGE <- function(sc10x,gs,save=FALSE,type,id,ds=0,nm="pops",print="tsne"){
  #Runs QuSAGE
  
  #Inputs:
  #sc10x = Seruat object
  #gs = geneset to use for correlation
  #save = save ID
  #type = type of qusage to run (id: create ID's based on run, sm: cor only using small genesets, lg: cor only with large genesets)
  #id = ident to use
  #nm = name of test
  #print = dimentionality reduction to use for display
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = correlation table
  #results[3] = correlation results
  
  if (!dir.exists(paste0("./analysis/cor/",nm))){
    dir.create(paste0("./analysis/cor/",nm))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/geneset"))){
    dir.create(paste0("./analysis/cor/",nm,"/geneset"))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/cluster"))){
    dir.create(paste0("./analysis/cor/",nm,"/cluster"))
  }
  if (!dir.exists(paste0("./analysis/vis/",nm))){
    dir.create(paste0("./analysis/vis/",nm))
  }
  
  Idents(object=sc10x) <- id
  number.clusters <- length(unique(levels(x=sc10x)))
  
  labels <- paste0("Cluster_",as.vector(Idents(object=sc10x)))
  
  cell.sample <- NULL
  for (i in unique(labels)){
    cell <- WhichCells(sc10x,ident=sub("Cluster_","",i))
    if (length(cell)>ds & ds!=0){
823
      set.seed(71682)
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
      rnd <- sample(1:length(cell),ds)
      cell <- cell[rnd]
    }
    cell.sample <- c(cell.sample,cell)
  }
  data <- as.data.frame(as.matrix(GetAssayData(sc10x[,colnames(sc10x) %in% cell.sample])))
  labels <- labels[colnames(sc10x) %in% cell.sample]
  groups <- sort(unique(labels))
  
  col <- hcl(h=(seq(15,375-375/length(groups),length=length(groups))),c=100,l=65)
  
  #Make labels for QuSAGE
  clust <- list()
  clust.comp <- list()
  for (i in groups){
    t <- labels
    t[t != i] <- "REST"
    clust[i] <- list(i=t)
    rm(t)
    clust.comp[i] <- paste0(i,"-REST")
  }
  
  #Run QuSAGE
  for (i in groups){
    assign(paste0("results.",i),qusage(data,unlist(clust[i]),unlist(clust.comp[i]),gs))
  }
  
  #Generate ID table
  results.cor <- NULL
  results.cor <- qsTable(get(paste0("results.",groups[1])),number=length(gs))
  results.cor$Cluster <- groups[1]
  for (i in groups[-1]){
    qs <- qsTable(get(paste0("results.",i)),number=length(gs))
    qs$Cluster <- i
    results.cor <- rbind(results.cor,qs)
  }
  results.cor <- results.cor[,-3]
  rownames(results.cor) <- NULL
  
  results.clust.id <- NULL
864
865
866
867
  #if (max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
  #  results.clust.id <- results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2]),]
  if (max(results.cor[results.cor[,4]==groups[1],][,2],na.rm=TRUE)>=0){
    results.clust.id <- results.cor[results.cor[,4]==groups[1],][which.max(results.cor[results.cor[,4]==groups[1],][,2]),]
868
869
870
871
872
873
874
875
  } else {
    results.clust.id$pathway.name <- "Unknown"
    results.clust.id$log.fold.change <- 0
    results.clust.id$FDR <- 0
    results.clust.id$Cluster <- groups[1]
    results.clust.id <- as.data.frame(results.clust.id)
  }
  for (i in groups[-1]){
876
877
878
879
    #if (max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
    #  results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2]),])
    if (max(results.cor[results.cor[,4]==i,][,2],na.rm=TRUE)>=0){
      results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i,][which.max(results.cor[results.cor[,4]==i,][,2]),])
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    } else {
      results.clust.id <- rbind(results.clust.id,data.frame(pathway.name="Unknown",log.fold.change=0,FDR=0,Cluster=i))
    }}
  rownames(results.clust.id) <- NULL
  
  #Determine axes for correlation plots
  max.x.rg <- 0
  min.x.rg <- 0
  max.y.rg <- 0
  for (i in groups){
    qs <- get(paste0("results.",i))
    if (max(qs$path.mean)>max.x.rg){
      max.x.rg <- max(qs$path.mean)
    }
    if (min(qs$path.mean)<min.x.rg){
      min.x.rg <- min(qs$path.mean)
    }
    if (max(qs$path.PDF)>max.y.rg){
      max.y.rg <- max(qs$path.PDF)
    }}
  if (type=="sm"){
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    #Plot correlation plots by geneset
    for (i in 1:length(gs)){
      postscript(paste0("./analysis/cor/",nm,"/geneset/QuSAGE_",nm,".",names(gs)[i],".eps"))
      for (j in groups){
        qs <- get(paste0("results.",j))
        if (j==groups[1]){
          plotDensityCurves(qs,path.index=i,col=col[match(j,groups)],main=names(gs)[i],xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=i,add=TRUE,col=col[match(j,groups)],lwd=5)
        }}
      legend("topright",col=col,legend=groups,lty=1,lwd=5,cex=2,ncol=1,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    #Plot correlation plots by cluster
    for (i in groups){
      qs <- get(paste0("results.",i))
      postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
      for (j in 1:length(gs)){
        if (j==1){
          plotDensityCurves(qs,path.index=j,col=viridis(length(gs))[j],main=i,xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=j,add=TRUE,col=viridis(length(gs))[j],lwd=5)
        }}
      legend("topright",col=viridis(length(gs)),legend=names(gs),lty=1,lwd=5,cex=1,ncol=2,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }} else {
      for (i in groups){
        qs <- get(paste0("results.",i))
        postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
        plotCIs(qs,path.index=1:numPathways(qs),cex.lab=1.5)
        dev.off()
      }}
  
  if (save==TRUE){
    merge.cluster <- NULL
    for (i in groups){
939
940
941
942
      #if (max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)>=0){
      #  sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)][1],"')")))
      if (max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)>=0){
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)][1],"')")))
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
      } else {
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = 'Unknown')")))
      }}
    sc10x[[nm]] <- Idents(object=sc10x)
  }
  
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",nm,"/tSNE_",id,"_",nm,".eps"))
    print(print2)
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",nm,"/UMAP_",id,"_",nm,".eps"))
    print(print3)
    dev.off()
  } else if (print=="2"){
    postscript(paste0("./analysis/vis/",nm,"/2Vis_",id,"_",nm,".eps"))
    grid.arrange(plot2,plot3,ncol=1)
    dev.off()
  } else if (print=="3"){
    postscript(paste0("./analysis/vis/",nm,"/3Vis_",id,"_",nm,".eps"))
    grid.arrange(plot1,plot2,plot3,ncol=1)
    dev.off()
  }
  
  results <- list(
    sc10x=sc10x,
    results.cor=results.cor,
    results.clust.id=results.clust.id
  )
  names(results)=c("sc10x",paste0("results.cor.",nm),paste0("results.clust.",nm,".id"))
  return(results)
}
978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
scShinyOutput <- function(sc10x,anal="raw"){
  write_delim(as.data.frame(colnames(sc10x)),path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/barcodes.tsv.gz"),delim="\t",col_names=FALSE)
  features <- rownames(sc10x)
  features <- c(features,c("nFeature","nCount","percent.mito","percent.ribo","Stress.score"))
  features <- data.frame(ENSG=features,Feature=features,Label="feature")
  write_delim(features,path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/features.tsv.gz"),delim="\t",col_names=FALSE)
  exp <- GetAssayData(sc10x,slot="scale.data")
  exp.extra <- matrix(nrow=5,ncol=ncol(sc10x))
  exp.extra[1,] <- as.numeric(sc10x$nFeature_RNA)
  exp.extra[2,] <- as.numeric(sc10x$nCount_RNA)
  exp.extra[3,] <- as.numeric(sc10x$percent.mito)
  exp.extra[4,] <- as.numeric(sc10x$percent.ribo)
  exp.extra[5,] <- as.numeric(sc10x$Stress1)
  exp <- rbind(exp,exp.extra)
Gervaise Henry's avatar
Gervaise Henry committed
993
  Matrix::writeMM(as(exp,"dgCMatrix"),file=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/matrix.mtx.gz"))
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
  for (i in c("pca","tsne","umap")){
    dr <- Embeddings(sc10x,i)
    if (i != "pca"){
      colnames(dr) <- c(paste0(toupper(i),"-",1:2))
    } else {
      dr <- dr[,1:10]
      colnames(dr) <- c(paste0(toupper(i),"-",1:10))
    }
    dr <- cbind(dr,Barcode=rownames(dr))
    dr <- dr[,c(3,1,2)]
    dr <- as.data.frame(dr,row.names=FALSE)
    if (i != "pca"){
1006
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/2_components/projection.csv"),col_names=TRUE)
1007
    } else {
1008
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/10_components/projection.csv"),col_names=TRUE)
1009
1010
    }
  }
1011
1012
1013
1014
1015
1016
  sc10x <- NormalizeData(sc10x,assay="RNA")
  clusters <- c("samples",paste0("integrated_snn_res.",res),"lin","pops","leu","scDWSpr")
  clusters <- intersect(clusters,names(sc10x@meta.data))
  for (i in clusters){
    if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))){
      dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))
1017
1018
1019
1020
1021
1022
    }
    clust <- as.matrix(sc10x[[i]])
    colnames(clust) <- "Cluster"
    clust <- cbind(clust,Barcode=rownames(clust))
    clust <- clust[,c(2,1)]
    clust <- as.data.frame(clust,row.names=FALSE)
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    clust[,2] <- paste0("Cluster ",clust[,2])
    write_csv(clust,paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i),"/clusters.csv"),col_names=TRUE)

    if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))){
      dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))
    }
    Idents(sc10x) <- i
    deg <- FindAllMarkers(sc10x,assay="RNA",slot="data",logfc.threshold=0,test.use="MAST",min.pct=0.25,min.diff.pct=0.25,max.cells.per.ident=500)
    dexp <- data.frame("Feature ID"=unique(deg$gene),"Feature Name"=unique(deg$gene))
    for (cluster in unique(deg$cluster)){
      dexp[,paste0("Cluster.",cluster,".Mean.Counts")] <- deg$pct.1[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
      dexp[,paste0("Cluster.",cluster,".Log2.fold.change")] <- deg$avg_logFC[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
      dexp[,paste0("Cluster.",cluster,".Adjusted.p.value")] <- deg$p_val_adj[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
    }
    colnames(dexp) <- gsub("\\."," ",colnames(dexp))
    write_csv(dexp,paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i),"/differential_expression.csv"),col_names=TRUE)
1039
  }
1040
}