sc-TissueMapper_functions.R 42.8 KB
Newer Older
1
2
3
4
5
6
7
#sc-TissueMapper
#Author: Gervaise H. Henry
#Email: gervaise.henry@utsouthwestern.edu
#Lab: Strand Lab, Deparment of Urology, University of Texas Southwestern Medical Center


scFolders <- function(){
Gervaise Henry's avatar
Gervaise Henry committed
8
9
  #Create analysis output folders
  
10
11
12
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
13
14
15
16
17
18
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
  if (!dir.exists("./analysis/qc/cutoffs/")){
    dir.create("./analysis/qc/cutoffs/")
  }
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
  if (!dir.exists("./analysis/qc/cellcycle")){
    dir.create("./analysis/qc/cellcycle")
  }
  if (!dir.exists("./analysis/vis")){
    dir.create("./analysis/vis")
  }
  if (!dir.exists("./analysis/score_id")){
    dir.create("./analysis/score_id")
  }
  if (!dir.exists("./analysis/cor")){
    dir.create("./analysis/cor")
  }
}


Gervaise Henry's avatar
Gervaise Henry committed
34
scLoad <- function(p,cellranger=3,aggr=TRUE,ncell=0,nfeat=0,seurat=FALSE){
35
36
37
38
  #Load and prefilter filtered_gene_bc_matrices_mex output from cellranger
  
  #Inputs:
  #p = project name
Gervaise Henry's avatar
Gervaise Henry committed
39
40
41
42
43
  #cellranger = cellranger version number used for count/aggr, 2, 3, or 4
  #aggr = if the samples are already aggregated, TRUE if using the output of aggr, FALSE if using outputs of each count
  #ncell = minimum number of cells for initial feature filter
  #nfeat = minimum number of features for initial cell filter
  #seurat = if Seurat R objects per sample are already created, TRUE if using Seurat objects, FALSE if using output of count
44
45
  
  #Outputs:
46
47
  #sc10x = Seurat object list
  #sc10x.groups = group labels for each sample
48
49
  
  
50
51
52
53
  sc10x.groups <- read_csv(paste0("./analysis/DATA/",p,"-demultiplex.csv"))
  
  #Load filtered_gene_bc_matrices output from cellranger
  sc10x <- list()
Gervaise Henry's avatar
Gervaise Henry committed
54
55
56
57
58
59
60
61
62
  if (seurat==FALSE) {
    sc10x.data <- list()
    if (aggr==TRUE){
      if (cellranger==2){
        sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_gene_bc_matrices_mex/"))
      } else {
        sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_feature_bc_matrix/"))
      }
      sc10x[aggr] <- new("seurat",raw.data=sc10x.data[aggr])
63
    } else {
Gervaise Henry's avatar
Gervaise Henry committed
64
65
66
67
68
69
70
71
72
      for (i in sc10x.groups$Samples){
        if (cellranger==2){
          sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_gene_bc_matrices/"))
        } else {
          sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_feature_bc_matrix/"))
        }
        sc10x[i] <- CreateSeuratObject(counts=sc10x.data[[i]],project=p,min.cells=ncell,min.features=nfeat)
        sc10x[[i]]$samples <- i
      }
73
    }
74
  } else {
75
    for (i in sc10x.groups$Samples){
Gervaise Henry's avatar
Gervaise Henry committed
76
77
78
79
80
81
82
83
84
85
86
87
      sc10x[i] <- readRDS(paste0("./analysis/DATA/10x/",i,"/",i,".rds"))
      sc10x[[i]] <- sc10x[[i]]
    }
  }
  
  if (length(colnames(sc10x.groups)[!(colnames(sc10x.groups) %in% c("Samples","ALL","Keep"))])!=0){
    for (i in sc10x.groups$Samples){
      Idents(sc10x[[i]],cells=1:ncol(sc10x[[i]])) <- i
      sc10x[[i]]$samples <- Idents(sc10x[[i]])
      for (j in colnames(sc10x.groups)[!(colnames(sc10x.groups) %in% c("Samples","ALL"))]){
        Idents(sc10x[[i]],cells=1:ncol(sc10x[[i]])) <- sc10x.groups[sc10x.groups$Samples==i,colnames(sc10x.groups)==j]
        sc10x[[i]]@meta.data <- sc10x[[i]]@meta.data[,c("nCount_RNA","nFeature_RNA","samples")]
88
      }
89
    }
90
91
  }
  
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  # #Label sample names from aggregation_csv.csv
  # if (sub==FALSE){
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation_csv.csv")
  #   } else {
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation.csv")
  #   }
  # } else {
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation_csv.csv"))
  #   } else {
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation.csv"))
  #   }
  # }
  # cell.codes <- as.data.frame(sc10x@raw.data@Dimnames[[2]])
  # colnames(cell.codes) <- "barcodes"
  # rownames(cell.codes) <- cell.codes$barcodes
  # cell.codes$lib.codes <- as.factor(gsub(pattern=".+-",replacement="",cell.codes$barcodes))
  # cell.codes$samples <- sc10x.aggr$library_id[match(cell.codes$lib.codes,as.numeric(rownames(sc10x.aggr)))]
  # sc10x <- CreateSeuratObject(counts=sc10x.data,project=p,assay="RNA",min.cells=mc,min.features=mg,meta.data=cell.codes["samples"])
  # 
  # #Create groups found in demultiplex.csv
  # for (i in 2:ncol(sc10x.demultiplex)){
  #   Idents(sc10x) <- "samples"
  #   merge.cluster <- apply(sc10x.demultiplex[,i],1,as.character)
  #   merge.cluster[merge.cluster==1] <- colnames(sc10x.demultiplex[,i])
  #   
  #   Idents(sc10x) <- plyr::mapvalues(x=Idents(sc10x),from=sc10x.demultiplex$Samples,to=merge.cluster)
  #   sc10x@meta.data[,colnames(sc10x.demultiplex[,i])] <- Idents(sc10x)
  # }
  
  
  results <- list(
    sc10x=sc10x,
    sc10x.groups=sc10x.groups
  )
  return(results)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
}


scSubset <- function(sc10x,i="ALL",g="ALL"){
  #Subset cells based on an identity
  
  #Inputs:
  #sc10x = seruat object
  #i = identity to use
  #g = group to subset by
  
  #Outputs:
  #Seurat object
  
  
144
  Idents(sc10x) <- i
145
146
  sc10x.sub <- subset(x=sc10x,idents=g)
  
147
  
148
149
150
151
  return(sc10x.sub)
}


152
scQC <- function(sc10x,sp="hu",feature="nFeature_RNA"){
153
154
155
156
157
158
159
  #QC and filter Seurat object
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
160
  #result[1] = filtered Seurat object
161
162
163
164
165
166
  #result[2] = raw cell count
  #result[3] = raw gene count
  #result[4] = filtered cell count
  #result[5] = filtered gene count
  
  
167
  #Calculate percent mitochondrea
168
  if (sp=="hu"){
169
    mito.pattern <- "^MT-"
170
    ribo.pattern <- "^(RPL|RPS)"
171
172
  } else if (sp=="mu"){
    mito.pattern <- "^mt-"
173
    ribo.pattern <- "^(Rpl|Rps)"
174
  }
175
176
177
  for (i in names(sc10x)){
    sc10x.temp <- sc10x[[i]]
    sc10x.temp[["percent.mito"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=mito.pattern)
178
    sc10x.temp[["percent.ribo"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=ribo.pattern)
179
    #sc10x.temp <- subset(sc10x.temp,cell=names(which(is.na(sc10x.temp$percent.mito))),invert=TRUE)
180
    sc10x[i] <- sc10x.temp
181
  }
182
  
183
184
  #Calculate cutoffs
  thresh <- list()
185
  for (i in feature){
Gervaise Henry's avatar
Gervaise Henry committed
186
    if (i == "nFeature_RNA"){
187
188
      sc10x.temp <- list()
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
189
190
191
192
193
194
195
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$nFeature_RNA,breaks=10,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["nFeature_RNA"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
196
      }
Gervaise Henry's avatar
Gervaise Henry committed
197
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="higher")
Gervaise Henry's avatar
Gervaise Henry committed
198
    }
199
    if (i == "percent.mito"){
Gervaise Henry's avatar
Gervaise Henry committed
200
      sc10x.temp <- list()
201
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
202
203
204
205
206
207
208
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$percent.mito,breaks=100,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["percent.mito"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
209
      }
Gervaise Henry's avatar
Gervaise Henry committed
210
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="higher")
211
    }
212
    if (i == "percent.ribo"){
Gervaise Henry's avatar
Gervaise Henry committed
213
      thresh[[i]] <- scThresh(sc10x,feature=i,sub="all")
214
215
    }
    if (i == "nCount_RNA"){
216
217
      sc10x.temp <- list()
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
218
219
220
221
222
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$nCount_RNA,breaks=100,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
Gervaise Henry's avatar
Gervaise Henry committed
223
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["nCount_RNA"]])[sc10x[[j]][[i]][,1] > cutoff.temp])
Gervaise Henry's avatar
Gervaise Henry committed
224
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
225
      }
Gervaise Henry's avatar
Gervaise Henry committed
226
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="lower")
227
    }
228
229
230
231
232
233
  }
  
  #Plot raw stats
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
234
  max.rb <- 0
235
236
237
238
239
240
241
242
243
244
  for (i in names(sc10x)){
    if (max.ct < max(sc10x[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x[[i]][["percent.mito"]])){
      max.mt <- max(sc10x[[i]][["percent.mito"]])
    }
245
246
247
    if (max.rb < max(sc10x[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x[[i]][["percent.ribo"]])
    }
248
249
250
251
  }
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
252
  max.rb <- max.rb*1.1
253
  cells.remove <- list()
254
  for (i in feature){
255
256
257
258
259
260
261
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
262
263
    } else if (i == "percent.ribo"){
      max.y <- max.rb
264
265
266
267
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
Gervaise Henry's avatar
Gervaise Henry committed
268
    sc10x.temp <- NULL
269
270
271
    for (j in names(sc10x)){
      sc10x.temp <- sc10x[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
272
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
273
274
        if (i == "nFeature_RNA"){
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
Gervaise Henry's avatar
Gervaise Henry committed
275
          cutoff.l <- 200
276
        } else if (i == "percent.mito") {
Gervaise Henry's avatar
Gervaise Henry committed
277
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Triangle"]
Gervaise Henry's avatar
Gervaise Henry committed
278
          cutoff.l <- 0
279
280
281
282
283
        } else if (i == "percent.ribo") {
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
          cutoff.l <- 0
        } else if (i == "nCount_RNA") {
          cutoff.h <- max(sc10x[[j]][[i]])
Gervaise Henry's avatar
Gervaise Henry committed
284
          cutoff.l <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
285
286
        }
        plots.v[[j]] <- plots.v[[j]]+geom_hline(yintercept=cutoff.l,size=0.5,color="red")+geom_hline(yintercept=cutoff.h,size=0.5,color="red")
287
288
289
290
291
292
293
        if (i != "nCount_RNA"){
          densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        } else {
          densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        }
294
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][[i]])[sc10x[[j]][[i]][,1] < cutoff.l | sc10x[[j]][[i]][,1] > cutoff.h])
295
      }
Gervaise Henry's avatar
Gervaise Henry committed
296
      ggsave(paste0("./analysis/qc/Violin_qc.raw.",i,".",j,".eps"),plot=plots.v[[j]])
297
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
Gervaise Henry's avatar
Gervaise Henry committed
298
299
        ggsave(paste0("./analysis/qc/Plot_qc.raw.",i,".",j,".eps"),plot=plots.s[[j]])
      }
300
    }
301
  }
302
  
303
304
305
306
307
308
309
310
311
  #Record cell/gene counts pre and post filtering
  counts.cell.raw <- list()
  counts.gene.raw <- list()
  sc10x.sub <- list()
  counts.cell.filtered <- list()
  counts.gene.filtered <- list()
  for (i in names(sc10x)){
    counts.cell.raw[i] <- ncol(GetAssayData(object=sc10x[[i]],slot="counts"))
    counts.gene.raw[i] <- nrow(GetAssayData(object=sc10x[[i]],slot="counts"))
312
    sc10x.sub[[i]] <- subset(sc10x[[i]],cells=setdiff(colnames(sc10x[[i]]),cells.remove[[i]]))
313
314
315
    counts.cell.filtered[i] <- ncol(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
    counts.gene.filtered[i] <- nrow(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
  }
316
317
  
  #Plot filtered stats
318
319
320
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
321
  max.rb <- 0
322
323
324
325
326
327
328
329
330
331
  for (i in names(sc10x)){
    if (max.ct < max(sc10x.sub[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x.sub[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x.sub[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x.sub[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x.sub[[i]][["percent.mito"]])){
      max.mt <- max(sc10x.sub[[i]][["percent.mito"]])
    }
332
333
334
    if (max.rb < max(sc10x.sub[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x.sub[[i]][["percent.ribo"]])
    }
335
  }
336
337
338
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
339
340
  max.rb <- max.rb*1.1
  for (i in feature){
341
342
343
344
345
346
347
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
348
349
    } else if (i == "percent.ribo"){
      max.y <- max.rb
350
351
352
353
354
355
356
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x.sub)){
      sc10x.temp <- sc10x.sub[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
357
      if (i != "nCount_RNA"){
358
        densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
359
360
361
362
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
      } else {
        densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
363
      }
364
      ggsave(paste0("./analysis/qc/Violin_qc.filtered.",i,".",j,".eps"),plot=plots.v[[j]])
365
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
366
367
368
        ggsave(paste0("./analysis/qc/Plot_qc.filtered.",i,".",j,".eps"),plot=plots.s[[j]])
      }

369
370
371
    }
  }
  
372
373
374
375
376
377
378
379
380
381
382
  
  results <- list(
    sc10x=sc10x.sub,
    counts.cell.raw=counts.cell.raw,
    counts.gene.raw=counts.gene.raw,
    counts.cell.filtered=counts.cell.filtered,
    counts.gene.filtered=counts.gene.filtered
  )
  return(results)
}

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
scThresh <- function(sc10x,feature,sub=FALSE){
  #Calculate thresholds and cutoffs
  
  #Inputs:
  #sc10x = Seruat object
  #feature = feature to threshold
  #sub = Subfolder to save output files
  
  #Outputs:
  #result = Threshold data
  
  
  #Make folders
  if (sub==FALSE){
    folder <- "./analysis/qc/cutoffs/"
  } else {
    folder <- paste0("./analysis/qc/cutoffs/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }
403
404
  }
  
405
406
407
408
409
410
411
  #Calculate range of histogram based threholding and manually select methods for cutoffs
  scale <- list()
  scale.scaled <- list()
  h <- list()
  thresh <-list()
  cutoff.l <- list()
  cutoff.h <- list()
412
  thresh_methods <- c("IJDefault","Huang","Huang2","IsoData","Li","Mean","MinErrorI","Moments","Otsu","Percentile","RenyiEntropy","Shanbhag","Triangle")#,"Intermodes"
413
414
415
416
  for (i in names(sc10x)){
    scale[[i]] <- data.frame(Score=sc10x[[i]][[feature]])
    colnames(scale[[i]]) <- "Score"
    scale[[i]] <- data.frame(Score=scale[[i]]$Score[!is.na(scale[[i]]$Score)])
Gervaise Henry's avatar
Gervaise Henry committed
417
418
419
    scale.scaled[[i]] <- as.integer((scale[[i]]$Score-min(scale[[i]]$Score))/(max(scale[[i]]$Score)-min(scale[[i]]$Score))*360)
    #scale.scaled[[i]] <- as.integer(scales::rescale(scale[[i]]$Score,to=c(0,1))*360)
    h[[i]] <- hist(scale[[i]]$Score,breaks=100,plot=FALSE)
Gervaise Henry's avatar
Gervaise Henry committed
420
    thresh[[i]] <- purrr::map_chr(thresh_methods,~auto_thresh(scale.scaled[[i]],.)) %>% tibble(method = thresh_methods, threshold = .)
421
    thresh[[i]]$threshold <- as.numeric(thresh[[i]]$threshold)
Gervaise Henry's avatar
Gervaise Henry committed
422
423
    thresh[[i]]$threshold <- ((thresh[[i]]$threshold/360)*(max(scale[[i]]$Score)-min(scale[[i]]$Score)))+min(scale[[i]]$Score)
    #thresh[[i]] <- thresh[[i]] %>% mutate(threshold=(scales::rescale(as.numeric(threshold)/360,to=range(scale[[i]]$Score))))
424
425
426
427
428
429
430
431
432
    postscript(paste0(folder,"Hist_qc.",i,".",feature,".eps"))
    plot(h[[i]],main=paste0("Histogram of ",feature," of sample ",i),xlab=feature)
    abline(v=thresh[[i]]$threshold)
    mtext(thresh[[i]]$method,side=1,line=2,at=thresh[[i]]$threshold,cex=0.5)
    dev.off()
  }
  
  
  return(thresh)
433
}
434

435
scCellCycle <- function(sc10x,sub=FALSE,sp="hu"){
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
  #Runs Seurat based PCA analysis for cell cycle ID
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = s genes
  #results[3] = g2m genes
  
  #Make sub-folders if necessary
  if (sub==FALSE){
    folder <- "./analysis/qc/cellcycle/"
  } else {
    folder <- paste0("./analysis/qc/cellcycle/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }}
  
  #score cell cycle
  genes.cc <- readLines(con="./genesets/regev_lab_cell_cycle_genes.txt")
  genes.s <- genes.cc[1:43]
  genes.g2m <- genes.cc[44:97]
  sc10x <- NormalizeData(object=sc10x,verbose=FALSE)
  sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE)
  sc10x <- CellCycleScoring(object=sc10x,s.features=genes.s,g2m.features=genes.g2m,set.ident=TRUE)
  
  #plot cell cycle specific genes
465
466
467
468
469
470
471
  if (sp=="hu"){
    genes=c("PCNA","TOP2A","MCM6","MKI67")
    postscript(paste0(folder,"Violin_cc.Raw.eps"))
    plot <- VlnPlot(object=sc10x,features=genes,ncol=2,pt.size=1)
    plot(plot)
    dev.off()
  }
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Raw.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  # gc()
  # sc10x <- ScaleData(object=sc10x,vars.to.regress=c("S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=TRUE)
  # gc()
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Norm.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  
  results <- list(
    sc10x=sc10x,
    genes.s=genes.s,
    genes.g2m=genes.g2m
  )
  return(results)
}


496
scPC <- function(sc10x,pc=50,hpc=0.9,file="pre.stress",print="tsne",assay="integrated"){
497
498
499
500
501
502
503
504
505
506
507
508
509
510
  #Scale Seurat object & calculate # of PCs to use
  
  #Inputs:
  #sc10x = Seruat object
  #pc = number of PCs to cacluate
  #hpc = max variance cutoff for PCs to use"
  #file = file for output
  
  #Outputs:
  #result[1] = Seurat object
  #result[2] = # of PCs to use
  
  #Run PCA
  Idents(object=sc10x) <- "ALL"
511
  sc10x <- RunPCA(object=sc10x,npcs=pc,verbose=FALSE,assay=assay)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
  
  #Calculate PCs to use
  pc.use <- sc10x[["pca"]]@stdev^2
  pc.use <- pc.use/sum(pc.use)
  pc.use <- cumsum(pc.use)
  pc.use <- min(which(pc.use>=hpc))
  
  postscript(paste0("./analysis/qc/Plot_PCElbow_",file,".eps"))
  plot <- ElbowPlot(object=sc10x,ndims=pc)
  plot <- plot+geom_vline(xintercept=pc.use,size=1,color="red")
  plot(plot)
  dev.off()
  
  results <- list(
    sc10x=sc10x,
    pc.use=pc.use
  )
  return(results)
}


Gervaise Henry's avatar
Gervaise Henry committed
533
scAlign <-  function(sc10x.l){
534
  for (i in 1:length(sc10x.l)){
535
    #sc10x.l[[i]] <- NormalizeData(sc10x.l[[i]],verbose=FALSE)
536
    gc()
537
    #sc10x.l[[i]] <- ScaleData(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose = FALSE)
538
    sc10x.l[[i]] <- SCTransform(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito","Stress1"),verbose=FALSE,assay="RNA")
539
    gc()
540
    #sc10x.l[[i]] <- FindVariableFeatures(sc10x.l[[i]],selection.method="vst",nfeatures=2000,verbose=FALSE)
541
542
  }
  
543
  sc10x.features <- SelectIntegrationFeatures(object.list=sc10x.l,nfeatures=5000)
544
  sc10x.l <- PrepSCTIntegration(object.list=sc10x.l,anchor.features=sc10x.features,verbose=FALSE)
545
546
547
548

  sc10x.l <- lapply(sc10x.l,FUN=function(x) { RunPCA(x,features=sc10x.features,verbose=FALSE) })
  
  sc10x.anchors <- FindIntegrationAnchors(object.list=sc10x.l,normalization.method="SCT",anchor.features=sc10x.features,verbose=FALSE,reduction="rpca",dims=1:30)
549
  sc10x <- IntegrateData(anchorset=sc10x.anchors,normalization.method="SCT",verbose=FALSE)
550
  
551
552
553
554
555
556
  #sc10x <- FindIntegrationAnchors(object.list=sc10x.l,dims=1:30,scale=FALSE)
  #sc10x <- IntegrateData(anchorset=sc10x,dims=1:30)
  
  #gc()
  #sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE,assay="integrated")
  #gc()
557
  
558
  gc()
559
  sc10x <- SCTransform(sc10x,vars.to.regress=c("nFeature_RNA","percent.mito","Stress1"),verbose=FALSE,return.only.var.genes=FALSE,assay="RNA")
560
  gc()
561
562
563
564
565
  
  return(sc10x)
}


566
scCluster <- function(sc10x,res=0.1,red="pca",dim,print="tsne",folder=FALSE,assay="integrated"){
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
  #Cluster Seurat object and produce visualizations
  
  #Inputs:
  #sc10x = Seruat object
  #res = resolution to calculate clustering
  #red = rediction type to use for clustering
  #dim = number of dimentions to use for display
  #print = dimentionality reduction to use for display
  #folder = folder for output
  
  #Outputs:
  #result = Seurat object
  
  #Create subfolder if necessary
  if (folder==FALSE){
    sub <- ""
  } else {
    if (!dir.exists(paste0("./analysis/vis/",folder))){
      dir.create(paste0("./analysis/vis/",folder))
    }
    sub <- paste0(folder,"/")
    
  }
  
591
  DefaultAssay(sc10x) <- assay
592

593
  #Calculste Vis
594
595
  sc10x <- RunTSNE(sc10x,dims=1:dim,reduction="pca",assay=assay)
  sc10x <- RunUMAP(sc10x,dims=1:dim,reduction="pca",assay=assay)
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
  
  sc10x <- FindNeighbors(sc10x,reduction=red,verbose=FALSE)
  
  for (i in res){
    sc10x <- FindClusters(sc10x,resolution=i,verbose=FALSE)
    
    plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      print(print2)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      print(print3)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,ncol=1)
      dev.off()
    }}
  
Gervaise Henry's avatar
Gervaise Henry committed
629
  for (i in c("samples","HTO_maxID","hash.ID")[c("samples","HTO_maxID","hash.ID") %in% colnames(sc10x@meta.data)]){
Gervaise Henry's avatar
Gervaise Henry committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    plot1 <- DimPlot(sc10x,reduction="pca",group.by=i)
    plot2 <- DimPlot(sc10x,reduction="tsne",group.by=i)
    plot3 <- DimPlot(sc10x,reduction="umap",group.by=i)
    legend <- cowplot::get_legend(plot1)
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      grid.arrange(plot2,legend,ncol=1)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      grid.arrange(plot3,legend,ncol=1)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,legend,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,legend,ncol=1)
      dev.off()
    }
657
  }
Gervaise Henry's avatar
Gervaise Henry committed
658
  
659
  DefaultAssay(sc10x) <- "SCT"
660
661
662
663
664
  
  return(sc10x)
}


665
scScore <- function(sc10x.l,score,geneset,cut.pt=0.9,anchor=FALSE){
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  #Runs custom PCA analysis for stress ID
  
  #Inputs:
  #sc10x = Seruat object
  #score = name of geneset for scoring
  #geneset = geneset to use for ID
  #cut.pt = % of cells to keep
  
  #Outputs:
  #results[1] = Seurat object (original + score)
  #results[2] = Seurat object (negatively filtered)
  #results[3] = Seurat object (positively filtered)
  
  #Make subdirectory
  if (!dir.exists(paste0("./analysis/score_id/",score))){
    dir.create(paste0("./analysis/score_id/",score))
  }
  if (!dir.exists(paste0("./analysis/vis/",score))){
    dir.create(paste0("./analysis/vis/",score))
  }
  
687
688
689
690
691
  sc10x.l.negative <- list()
  sc10x.l.positive <- list()
  
  for (i in names(sc10x.l)){
    sc10x <- sc10x.l[[i]]
692
    
693
694
695
    #Score geneset
    sc10x <- AddModuleScore(object=sc10x,features=geneset,name=score,assay="SCT")
    Idents(object=sc10x) <- paste0(score,"1")
696
    
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    #CDF
    cdf <- ecdf(as.numeric(levels(sc10x)))
    if (cut.pt == "renyi"){
      h <- hist(data.frame(sc10x[[paste0(score,"1")]])[,paste0(score,"1")],breaks=1000,plot=FALSE)
      cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
      cells.remove <- rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]][,1] < cutoff.temp]
      sc10x.temp <- subset(sc10x,cells=cells.remove,invert=TRUE)
   
      thresh <- list()
      thresh[["all"]] <- scThresh(list(all=sc10x.temp),feature=paste0(score,"1"),sub=score)
      cut.x <- thresh$all$all$threshold[thresh$all$all$method=="RenyiEntropy"]
    } else if (cut.pt == "triangle"){
      h <- hist(data.frame(sc10x[[paste0(score,"1")]])[,paste0(score,"1")],breaks=1000,plot=FALSE)
      cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
      cells.remove <- rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]][,1] < cutoff.temp]
      sc10x.temp <- subset(sc10x,cells=cells.remove,invert=TRUE)
      
      thresh <- list()
      thresh[["all"]] <- scThresh(list(all=sc10x.temp),feature=paste0(score,"1"),sub=score)
      cut.x <- thresh$all$all$threshold[thresh$all$all$method=="Triangle"]
    } else if (cut.pt == "minerror"){
      h <- hist(data.frame(sc10x[[paste0(score,"1")]])[,paste0(score,"1")],breaks=1000,plot=FALSE)
      cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
      cells.remove <- rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]][,1] < cutoff.temp]
      sc10x.temp <- subset(sc10x,cells=cells.remove,invert=TRUE)
      
      thresh <- list()
      thresh[["all"]] <- scThresh(list(all=sc10x.temp),feature=paste0(score,"1"),sub=score)
      cut.x <- thresh$all$all$threshold[thresh$all$all$method=="MinErrorI"]
    } else {
      cut.x <- quantile(cdf,probs=cut.pt)
      cut.x <- unname(cut.x)
    }
    postscript(paste0("./analysis/score_id/",score,"/CDF_",i,".",score,".eps"))
    plot(cdf,main=paste0("Cumulative Distribution of ",score," Score"),xlab=paste0(score," Score"),ylab="CDF")
    abline(v=cut.x,col="red")
    dev.off()  
    
    #KDE
    postscript(paste0("./analysis/score_id/",score,"/Histo_",i,".",score,".eps"))
    plot(ggplot(data.frame(Score=as.numeric(levels(sc10x))),aes(x=Score))+geom_histogram(bins=100,aes(y=..density..))+geom_density()+geom_vline(xintercept=cut.x,size=1,color="red")+ggtitle(paste0(score," Score"))+cowplot::theme_cowplot())
738
    dev.off()
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    
    Idents(object=sc10x) <- "ALL"
    predicate <- paste0(score,"1 >= ",cut.x)
    Idents(object=sc10x, cells = rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]] >= cut.x]) <- score
    sc10x[[score]] <- Idents(object=sc10x)
    Idents(sc10x) <- score
    sc10x.negative <- subset(x=sc10x,idents="ALL")
    sc10x.positive <- subset(x=sc10x,idents=score)
    
    #Generate plots
    postscript(paste0("./analysis/vis/",score,"/3Vis_",i,".",score,".eps"))
    plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("ALL")
    plot2 <- DimPlot(sc10x.negative,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot3 <- DimPlot(sc10x.positive,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot4 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Negative")
    plot5 <- DimPlot(sc10x.negative,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot6 <- DimPlot(sc10x.positive,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot7 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Positive")
    plot8 <- DimPlot(sc10x.negative,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot9 <- DimPlot(sc10x.positive,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    grid.arrange(plot1,plot2,plot3,plot4,plot5,plot6,plot7,plot8,plot9,ncol=3)
    dev.off()
    
    #Generate violin plot of gene exvpression
    if (anchor!=FALSE){
      postscript(paste0("./analysis/score_id/",score,"/Violin_",i,".",score,".eps"))
      plot <- VlnPlot(object=sc10x,features=anchor,pt.size=0.1,assay="SCT")
      plot(plot)
      dev.off()
    }
    sc10x.l[[i]] <- sc10x
    sc10x.l.negative[[i]] <- sc10x.negative
    sc10x.l.positive[[i]] <- sc10x.positive
772
773
774
  }
  
  results <- list(
775
776
777
    sc10x <- sc10x.l,
    sc10x.negative <- sc10x.l.negative,
    sc10x.positive <- sc10x.l.positive
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
  )
  return(results)
}


scQuSAGE <- function(sc10x,gs,save=FALSE,type,id,ds=0,nm="pops",print="tsne"){
  #Runs QuSAGE
  
  #Inputs:
  #sc10x = Seruat object
  #gs = geneset to use for correlation
  #save = save ID
  #type = type of qusage to run (id: create ID's based on run, sm: cor only using small genesets, lg: cor only with large genesets)
  #id = ident to use
  #nm = name of test
  #print = dimentionality reduction to use for display
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = correlation table
  #results[3] = correlation results
  
  if (!dir.exists(paste0("./analysis/cor/",nm))){
    dir.create(paste0("./analysis/cor/",nm))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/geneset"))){
    dir.create(paste0("./analysis/cor/",nm,"/geneset"))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/cluster"))){
    dir.create(paste0("./analysis/cor/",nm,"/cluster"))
  }
  if (!dir.exists(paste0("./analysis/vis/",nm))){
    dir.create(paste0("./analysis/vis/",nm))
  }
  
  Idents(object=sc10x) <- id
  number.clusters <- length(unique(levels(x=sc10x)))
  
  labels <- paste0("Cluster_",as.vector(Idents(object=sc10x)))
  
  cell.sample <- NULL
  for (i in unique(labels)){
    cell <- WhichCells(sc10x,ident=sub("Cluster_","",i))
    if (length(cell)>ds & ds!=0){
822
      set.seed(71682)
823
824
825
826
827
828
829
      rnd <- sample(1:length(cell),ds)
      cell <- cell[rnd]
    }
    cell.sample <- c(cell.sample,cell)
  }
  data <- as.data.frame(as.matrix(GetAssayData(sc10x[,colnames(sc10x) %in% cell.sample])))
  labels <- labels[colnames(sc10x) %in% cell.sample]
Gervaise Henry's avatar
Gervaise Henry committed
830
831
  #groups <- sort(unique(labels))
  groups <- paste0("Cluster_",levels(sc10x@active.ident))
832
  
Gervaise Henry's avatar
Gervaise Henry committed
833
834
  #col <- hcl(h=(seq(15,375-375/length(groups),length=length(groups))),c=100,l=65)
  col <- brewer.pal(n=length(groups),name="Dark2")
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
  
  #Make labels for QuSAGE
  clust <- list()
  clust.comp <- list()
  for (i in groups){
    t <- labels
    t[t != i] <- "REST"
    clust[i] <- list(i=t)
    rm(t)
    clust.comp[i] <- paste0(i,"-REST")
  }
  
  #Run QuSAGE
  for (i in groups){
    assign(paste0("results.",i),qusage(data,unlist(clust[i]),unlist(clust.comp[i]),gs))
  }
  
  #Generate ID table
  results.cor <- NULL
  results.cor <- qsTable(get(paste0("results.",groups[1])),number=length(gs))
  results.cor$Cluster <- groups[1]
  for (i in groups[-1]){
    qs <- qsTable(get(paste0("results.",i)),number=length(gs))
    qs$Cluster <- i
    results.cor <- rbind(results.cor,qs)
  }
  results.cor <- results.cor[,-3]
  rownames(results.cor) <- NULL
  
  results.clust.id <- NULL
865
866
867
868
  #if (max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
  #  results.clust.id <- results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2]),]
  if (max(results.cor[results.cor[,4]==groups[1],][,2],na.rm=TRUE)>=0){
    results.clust.id <- results.cor[results.cor[,4]==groups[1],][which.max(results.cor[results.cor[,4]==groups[1],][,2]),]
869
870
871
872
873
874
875
876
  } else {
    results.clust.id$pathway.name <- "Unknown"
    results.clust.id$log.fold.change <- 0
    results.clust.id$FDR <- 0
    results.clust.id$Cluster <- groups[1]
    results.clust.id <- as.data.frame(results.clust.id)
  }
  for (i in groups[-1]){
877
878
879
880
    #if (max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
    #  results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2]),])
    if (max(results.cor[results.cor[,4]==i,][,2],na.rm=TRUE)>=0){
      results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i,][which.max(results.cor[results.cor[,4]==i,][,2]),])
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
    } else {
      results.clust.id <- rbind(results.clust.id,data.frame(pathway.name="Unknown",log.fold.change=0,FDR=0,Cluster=i))
    }}
  rownames(results.clust.id) <- NULL
  
  #Determine axes for correlation plots
  max.x.rg <- 0
  min.x.rg <- 0
  max.y.rg <- 0
  for (i in groups){
    qs <- get(paste0("results.",i))
    if (max(qs$path.mean)>max.x.rg){
      max.x.rg <- max(qs$path.mean)
    }
    if (min(qs$path.mean)<min.x.rg){
      min.x.rg <- min(qs$path.mean)
    }
    if (max(qs$path.PDF)>max.y.rg){
      max.y.rg <- max(qs$path.PDF)
    }}
  if (type=="sm"){
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    #Plot correlation plots by geneset
    for (i in 1:length(gs)){
      postscript(paste0("./analysis/cor/",nm,"/geneset/QuSAGE_",nm,".",names(gs)[i],".eps"))
      for (j in groups){
        qs <- get(paste0("results.",j))
        if (j==groups[1]){
          plotDensityCurves(qs,path.index=i,col=col[match(j,groups)],main=names(gs)[i],xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=i,add=TRUE,col=col[match(j,groups)],lwd=5)
        }}
      legend("topright",col=col,legend=groups,lty=1,lwd=5,cex=2,ncol=1,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    #Plot correlation plots by cluster
    for (i in groups){
      qs <- get(paste0("results.",i))
      postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
      for (j in 1:length(gs)){
        if (j==1){
          plotDensityCurves(qs,path.index=j,col=viridis(length(gs))[j],main=i,xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=j,add=TRUE,col=viridis(length(gs))[j],lwd=5)
        }}
      legend("topright",col=viridis(length(gs)),legend=names(gs),lty=1,lwd=5,cex=1,ncol=2,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }} else {
      for (i in groups){
        qs <- get(paste0("results.",i))
        postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
        plotCIs(qs,path.index=1:numPathways(qs),cex.lab=1.5)
        dev.off()
      }}
  
  if (save==TRUE){
    merge.cluster <- NULL
    for (i in groups){
940
941
942
943
      #if (max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)>=0){
      #  sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)][1],"')")))
      if (max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)>=0){
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)][1],"')")))
944
945
946
947
948
949
950
951
952
953
954
      } else {
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = 'Unknown')")))
      }}
    sc10x[[nm]] <- Idents(object=sc10x)
  }
  
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",nm,"/tSNE_",id,"_",nm,".eps"))
Gervaise Henry's avatar
Gervaise Henry committed
955
    print(plot2)
956
957
958
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",nm,"/UMAP_",id,"_",nm,".eps"))
Gervaise Henry's avatar
Gervaise Henry committed
959
    print(plot3)
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    dev.off()
  } else if (print=="2"){
    postscript(paste0("./analysis/vis/",nm,"/2Vis_",id,"_",nm,".eps"))
    grid.arrange(plot2,plot3,ncol=1)
    dev.off()
  } else if (print=="3"){
    postscript(paste0("./analysis/vis/",nm,"/3Vis_",id,"_",nm,".eps"))
    grid.arrange(plot1,plot2,plot3,ncol=1)
    dev.off()
  }
  
  results <- list(
    sc10x=sc10x,
    results.cor=results.cor,
    results.clust.id=results.clust.id
  )
  names(results)=c("sc10x",paste0("results.cor.",nm),paste0("results.clust.",nm,".id"))
  return(results)
}
979

980
981
982
983
984
985
986
987
988
989
990
991
992
993
scShinyOutput <- function(sc10x,anal="raw"){
  write_delim(as.data.frame(colnames(sc10x)),path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/barcodes.tsv.gz"),delim="\t",col_names=FALSE)
  features <- rownames(sc10x)
  features <- c(features,c("nFeature","nCount","percent.mito","percent.ribo","Stress.score"))
  features <- data.frame(ENSG=features,Feature=features,Label="feature")
  write_delim(features,path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/features.tsv.gz"),delim="\t",col_names=FALSE)
  exp <- GetAssayData(sc10x,slot="scale.data")
  exp.extra <- matrix(nrow=5,ncol=ncol(sc10x))
  exp.extra[1,] <- as.numeric(sc10x$nFeature_RNA)
  exp.extra[2,] <- as.numeric(sc10x$nCount_RNA)
  exp.extra[3,] <- as.numeric(sc10x$percent.mito)
  exp.extra[4,] <- as.numeric(sc10x$percent.ribo)
  exp.extra[5,] <- as.numeric(sc10x$Stress1)
  exp <- rbind(exp,exp.extra)
Gervaise Henry's avatar
Gervaise Henry committed
994
  Matrix::writeMM(as(exp,"dgCMatrix"),file=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/matrix.mtx.gz"))
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
  for (i in c("pca","tsne","umap")){
    dr <- Embeddings(sc10x,i)
    if (i != "pca"){
      colnames(dr) <- c(paste0(toupper(i),"-",1:2))
    } else {
      dr <- dr[,1:10]
      colnames(dr) <- c(paste0(toupper(i),"-",1:10))
    }
    dr <- cbind(dr,Barcode=rownames(dr))
    dr <- dr[,c(3,1,2)]
    dr <- as.data.frame(dr,row.names=FALSE)
    if (i != "pca"){
1007
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/2_components/projection.csv"),col_names=TRUE)
1008
    } else {
1009
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/10_components/projection.csv"),col_names=TRUE)
1010
1011
    }
  }
1012
  sc10x <- NormalizeData(sc10x,assay="RNA")
Gervaise Henry's avatar
Gervaise Henry committed
1013
  clusters <- c("samples","samples_HTO",paste0("integrated_snn_res.",res),"lin","pops","leu","scDWSpr","HTO_maxID","hash.ID")
1014
1015
  clusters <- intersect(clusters,names(sc10x@meta.data))
  for (i in clusters){
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    if (nrow(unique(sc10x[[i]]))>1){
      if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))){
        dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))
      }
      clust <- as.matrix(sc10x[[i]])
      colnames(clust) <- "Cluster"
      clust <- cbind(clust,Barcode=rownames(clust))
      clust <- clust[,c(2,1)]
      clust <- as.data.frame(clust,row.names=FALSE)
      clust[,2] <- paste0("Cluster ",clust[,2])
      write_csv(clust,paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i),"/clusters.csv"),col_names=TRUE)
  
      if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))){
        dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))
      }
      Idents(sc10x) <- i
      deg <- FindAllMarkers(sc10x,assay="RNA",slot="data",logfc.threshold=0,test.use="MAST",min.pct=0.25,min.diff.pct=0.25,max.cells.per.ident=500)
      dexp <- data.frame("Feature ID"=unique(deg$gene),"Feature Name"=unique(deg$gene))
      for (cluster in unique(deg$cluster)){
        dexp[,paste0("Cluster.",cluster,".Mean.Counts")] <- deg$pct.1[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
        dexp[,paste0("Cluster.",cluster,".Log2.fold.change")] <- deg$avg_logFC[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
        dexp[,paste0("Cluster.",cluster,".Adjusted.p.value")] <- deg$p_val_adj[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
      }
      colnames(dexp) <- gsub("\\."," ",colnames(dexp))
      write_csv(dexp,paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i),"/differential_expression.csv"),col_names=TRUE)
1041
    }
1042
  }
1043
}