sc-TissueMapper_functions.R 42.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#sc-TissueMapper
#Author: Gervaise H. Henry
#Email: gervaise.henry@utsouthwestern.edu
#Lab: Strand Lab, Deparment of Urology, University of Texas Southwestern Medical Center


scFolders <- function(){
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
11
12
13
14
15
16
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
  if (!dir.exists("./analysis/qc/cutoffs/")){
    dir.create("./analysis/qc/cutoffs/")
  }
17
18
19
20
21
22
23
24
25
26
27
28
  if (!dir.exists("./analysis/qc/cellcycle")){
    dir.create("./analysis/qc/cellcycle")
  }
  if (!dir.exists("./analysis/vis")){
    dir.create("./analysis/vis")
  }
  if (!dir.exists("./analysis/score_id")){
    dir.create("./analysis/score_id")
  }
  if (!dir.exists("./analysis/cor")){
    dir.create("./analysis/cor")
  }
29
30
31
32
33
34
  if (!dir.exists("./analysis/shiny")){
    dir.create("./analysis/shiny")
  }
  if (!dir.exists("./analysis/shiny")){
    dir.create("./analysis/shiny")
  }
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  for (i in c("raw","id","id.epi","id.fmst","id.st","id.leu")){
    if (!dir.exists(paste0("./analysis/shiny/",i))){
      dir.create(paste0("./analysis/shiny/",i))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/filtered_feature_bc_matrix"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/filtered_feature_bc_matrix"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/clustering"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/clustering"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/diffexp"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/diffexp"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/pca"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/pca"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/pca/10_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/pca/10_components"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/tsne"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/tsne"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/tsne/2_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/tsne/2_components"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/umap"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/umap"))
    }
    if (!dir.exists(paste0("./analysis/shiny/",i,"/outs/analysis/umap/2_components"))){
      dir.create(paste0("./analysis/shiny/",i,"/outs/analysis/umap/2_components"))
    }
72
  }
73
74
75
}


Gervaise Henry's avatar
Gervaise Henry committed
76
scLoad <- function(p,cellranger=3,aggr=TRUE,ncell=0,nfeat=0){
77
78
79
80
  #Load and prefilter filtered_gene_bc_matrices_mex output from cellranger
  
  #Inputs:
  #p = project name
81
82
  #cellranger cellranger version number used for count/aggr, 2 or 3
  #aggr = if the samples are already aggregated, TRUE if useing the output of aggr, FALSE if using outputs of each count
83
84
  
  #Outputs:
85
86
  #sc10x = Seurat object list
  #sc10x.groups = group labels for each sample
87
88
  
  
89
90
91
92
93
94
95
  sc10x.groups <- read_csv(paste0("./analysis/DATA/",p,"-demultiplex.csv"))
  
  
  #Load filtered_gene_bc_matrices output from cellranger
  sc10x.data <- list()
  sc10x <- list()
  if (aggr==TRUE){
96
    if (cellranger==2){
97
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_gene_bc_matrices_mex/"))
98
    } else {
99
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_feature_bc_matrix/"))
100
    }
101
    sc10x[aggr] <- new("seurat",raw.data=sc10x.data[aggr])
102
  } else {
103
104
105
106
107
108
    for (i in sc10x.groups$Samples){
      if (cellranger==2){
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_gene_bc_matrices/"))
      } else {
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_feature_bc_matrix/"))
      }
Gervaise Henry's avatar
Gervaise Henry committed
109
      sc10x[i] <- CreateSeuratObject(counts=sc10x.data[[i]],project=p,min.cells=ncell,min.features=nfeat)
110
      sc10x[[i]]$samples <- i
111
    }
112
113
  }
  
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  # #Label sample names from aggregation_csv.csv
  # if (sub==FALSE){
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation_csv.csv")
  #   } else {
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation.csv")
  #   }
  # } else {
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation_csv.csv"))
  #   } else {
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation.csv"))
  #   }
  # }
  # cell.codes <- as.data.frame(sc10x@raw.data@Dimnames[[2]])
  # colnames(cell.codes) <- "barcodes"
  # rownames(cell.codes) <- cell.codes$barcodes
  # cell.codes$lib.codes <- as.factor(gsub(pattern=".+-",replacement="",cell.codes$barcodes))
  # cell.codes$samples <- sc10x.aggr$library_id[match(cell.codes$lib.codes,as.numeric(rownames(sc10x.aggr)))]
  # sc10x <- CreateSeuratObject(counts=sc10x.data,project=p,assay="RNA",min.cells=mc,min.features=mg,meta.data=cell.codes["samples"])
  # 
  # #Create groups found in demultiplex.csv
  # for (i in 2:ncol(sc10x.demultiplex)){
  #   Idents(sc10x) <- "samples"
  #   merge.cluster <- apply(sc10x.demultiplex[,i],1,as.character)
  #   merge.cluster[merge.cluster==1] <- colnames(sc10x.demultiplex[,i])
  #   
  #   Idents(sc10x) <- plyr::mapvalues(x=Idents(sc10x),from=sc10x.demultiplex$Samples,to=merge.cluster)
  #   sc10x@meta.data[,colnames(sc10x.demultiplex[,i])] <- Idents(sc10x)
  # }
  
  
  results <- list(
    sc10x=sc10x,
    sc10x.groups=sc10x.groups
  )
  return(results)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
}


scSubset <- function(sc10x,i="ALL",g="ALL"){
  #Subset cells based on an identity
  
  #Inputs:
  #sc10x = seruat object
  #i = identity to use
  #g = group to subset by
  
  #Outputs:
  #Seurat object
  
  
166
  Idents(sc10x) <- i
167
168
  sc10x.sub <- subset(x=sc10x,idents=g)
  
169
  
170
171
172
173
  return(sc10x.sub)
}


174
scQC <- function(sc10x,sp="hu",feature="nFeature_RNA"){
175
176
177
178
179
180
181
  #QC and filter Seurat object
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
182
  #result[1] = filtered Seurat object
183
184
185
186
187
188
  #result[2] = raw cell count
  #result[3] = raw gene count
  #result[4] = filtered cell count
  #result[5] = filtered gene count
  
  
189
  #Calculate percent mitochondrea
190
  if (sp=="hu"){
191
    mito.pattern <- "^MT-"
192
    ribo.pattern <- "^(RPL|RPS)"
193
194
  } else if (sp=="mu"){
    mito.pattern <- "^mt-"
195
    ribo.pattern <- "^(Rpl|Rps)"
196
  }
197
198
199
  for (i in names(sc10x)){
    sc10x.temp <- sc10x[[i]]
    sc10x.temp[["percent.mito"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=mito.pattern)
200
    sc10x.temp[["percent.ribo"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=ribo.pattern)
201
    #sc10x.temp <- subset(sc10x.temp,cell=names(which(is.na(sc10x.temp$percent.mito))),invert=TRUE)
202
    sc10x[i] <- sc10x.temp
203
  }
204
  
205
206
  #Calculate cutoffs
  thresh <- list()
207
  for (i in feature){
Gervaise Henry's avatar
Gervaise Henry committed
208
    if (i == "nFeature_RNA"){
209
210
      sc10x.temp <- list()
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
211
212
213
214
215
216
217
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$nFeature_RNA,breaks=10,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["nFeature_RNA"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
218
      }
Gervaise Henry's avatar
Gervaise Henry committed
219
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="higher")
Gervaise Henry's avatar
Gervaise Henry committed
220
    }
221
    if (i == "percent.mito"){
Gervaise Henry's avatar
Gervaise Henry committed
222
      sc10x.temp <- list()
223
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
224
225
226
227
228
229
230
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$percent.mito,breaks=100,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["percent.mito"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
231
      }
Gervaise Henry's avatar
Gervaise Henry committed
232
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="higher")
233
    }
234
    if (i == "percent.ribo"){
Gervaise Henry's avatar
Gervaise Henry committed
235
      thresh[[i]] <- scThresh(sc10x,feature=i,sub="all")
236
237
    }
    if (i == "nCount_RNA"){
238
239
      sc10x.temp <- list()
      for (j in names(sc10x)){
Gervaise Henry's avatar
Gervaise Henry committed
240
241
242
243
244
245
246
        h <- NULL
        cutoff.temp <- NULL
        cells.remove <- NULL
        h <- hist(data.frame(sc10x[[j]][[i]])$nCount_RNA,breaks=100,plot=FALSE)
        cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- c(cells.remove,rownames(sc10x[[j]][["nCount_RNA"]])[sc10x[[j]][[i]][,1] < cutoff.temp])
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=cells.remove,invert=TRUE)
247
      }
Gervaise Henry's avatar
Gervaise Henry committed
248
      thresh[[i]] <- scThresh(sc10x.temp,feature=i,sub="lower")
249
    }
250
251
252
253
254
255
  }
  
  #Plot raw stats
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
256
  max.rb <- 0
257
258
259
260
261
262
263
264
265
266
  for (i in names(sc10x)){
    if (max.ct < max(sc10x[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x[[i]][["percent.mito"]])){
      max.mt <- max(sc10x[[i]][["percent.mito"]])
    }
267
268
269
    if (max.rb < max(sc10x[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x[[i]][["percent.ribo"]])
    }
270
271
272
273
  }
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
274
  max.rb <- max.rb*1.1
275
  cells.remove <- list()
276
  for (i in feature){
277
278
279
280
281
282
283
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
284
285
    } else if (i == "percent.ribo"){
      max.y <- max.rb
286
287
288
289
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
Gervaise Henry's avatar
Gervaise Henry committed
290
    sc10x.temp <- NULL
291
292
293
    for (j in names(sc10x)){
      sc10x.temp <- sc10x[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
294
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
295
296
        if (i == "nFeature_RNA"){
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
Gervaise Henry's avatar
Gervaise Henry committed
297
          cutoff.l <- 200
298
        } else if (i == "percent.mito") {
Gervaise Henry's avatar
Gervaise Henry committed
299
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Triangle"]
Gervaise Henry's avatar
Gervaise Henry committed
300
          cutoff.l <- 0
301
302
303
304
305
        } else if (i == "percent.ribo") {
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
          cutoff.l <- 0
        } else if (i == "nCount_RNA") {
          cutoff.h <- max(sc10x[[j]][[i]])
Gervaise Henry's avatar
Gervaise Henry committed
306
          cutoff.l <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="MinErrorI"]
307
308
        }
        plots.v[[j]] <- plots.v[[j]]+geom_hline(yintercept=cutoff.l,size=0.5,color="red")+geom_hline(yintercept=cutoff.h,size=0.5,color="red")
309
310
311
312
313
314
315
        if (i != "nCount_RNA"){
          densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        } else {
          densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
          plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        }
316
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][[i]])[sc10x[[j]][[i]][,1] < cutoff.l | sc10x[[j]][[i]][,1] > cutoff.h])
317
      }
Gervaise Henry's avatar
Gervaise Henry committed
318
      ggsave(paste0("./analysis/qc/Violin_qc.raw.",i,".",j,".eps"),plot=plots.v[[j]])
319
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
Gervaise Henry's avatar
Gervaise Henry committed
320
321
        ggsave(paste0("./analysis/qc/Plot_qc.raw.",i,".",j,".eps"),plot=plots.s[[j]])
      }
322
    }
323
  }
324
  
325
326
327
328
329
330
331
332
333
  #Record cell/gene counts pre and post filtering
  counts.cell.raw <- list()
  counts.gene.raw <- list()
  sc10x.sub <- list()
  counts.cell.filtered <- list()
  counts.gene.filtered <- list()
  for (i in names(sc10x)){
    counts.cell.raw[i] <- ncol(GetAssayData(object=sc10x[[i]],slot="counts"))
    counts.gene.raw[i] <- nrow(GetAssayData(object=sc10x[[i]],slot="counts"))
334
    sc10x.sub[[i]] <- subset(sc10x[[i]],cells=setdiff(colnames(sc10x[[i]]),cells.remove[[i]]))
335
336
337
    counts.cell.filtered[i] <- ncol(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
    counts.gene.filtered[i] <- nrow(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
  }
338
339
  
  #Plot filtered stats
340
341
342
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
343
  max.rb <- 0
344
345
346
347
348
349
350
351
352
353
  for (i in names(sc10x)){
    if (max.ct < max(sc10x.sub[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x.sub[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x.sub[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x.sub[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x.sub[[i]][["percent.mito"]])){
      max.mt <- max(sc10x.sub[[i]][["percent.mito"]])
    }
354
355
356
    if (max.rb < max(sc10x.sub[[i]][["percent.ribo"]])){
      max.rb <- max(sc10x.sub[[i]][["percent.ribo"]])
    }
357
  }
358
359
360
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
361
362
  max.rb <- max.rb*1.1
  for (i in feature){
363
364
365
366
367
368
369
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
370
371
    } else if (i == "percent.ribo"){
      max.y <- max.rb
372
373
374
375
376
377
378
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x.sub)){
      sc10x.temp <- sc10x.sub[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
379
      if (i != "nCount_RNA"){
380
        densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
381
382
383
384
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
      } else {
        densities.s[[j]] <- density(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1],n=1000)
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nFeature_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nFeature_RNA",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
385
      }
386
      ggsave(paste0("./analysis/qc/Violin_qc.filtered.",i,".",j,".eps"),plot=plots.v[[j]])
387
      if (i %in% c("nFeature_RNA","percent.mito","percent.ribo","nCount_RNA")){
388
389
390
        ggsave(paste0("./analysis/qc/Plot_qc.filtered.",i,".",j,".eps"),plot=plots.s[[j]])
      }

391
392
393
    }
  }
  
394
395
396
397
398
399
400
401
402
403
404
  
  results <- list(
    sc10x=sc10x.sub,
    counts.cell.raw=counts.cell.raw,
    counts.gene.raw=counts.gene.raw,
    counts.cell.filtered=counts.cell.filtered,
    counts.gene.filtered=counts.gene.filtered
  )
  return(results)
}

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
scThresh <- function(sc10x,feature,sub=FALSE){
  #Calculate thresholds and cutoffs
  
  #Inputs:
  #sc10x = Seruat object
  #feature = feature to threshold
  #sub = Subfolder to save output files
  
  #Outputs:
  #result = Threshold data
  
  
  #Make folders
  if (sub==FALSE){
    folder <- "./analysis/qc/cutoffs/"
  } else {
    folder <- paste0("./analysis/qc/cutoffs/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }
425
426
  }
  
427
428
429
430
431
432
433
  #Calculate range of histogram based threholding and manually select methods for cutoffs
  scale <- list()
  scale.scaled <- list()
  h <- list()
  thresh <-list()
  cutoff.l <- list()
  cutoff.h <- list()
434
  thresh_methods <- c("IJDefault","Huang","Huang2","IsoData","Li","Mean","MinErrorI","Moments","Otsu","Percentile","RenyiEntropy","Shanbhag","Triangle")#,"Intermodes"
435
436
437
438
  for (i in names(sc10x)){
    scale[[i]] <- data.frame(Score=sc10x[[i]][[feature]])
    colnames(scale[[i]]) <- "Score"
    scale[[i]] <- data.frame(Score=scale[[i]]$Score[!is.na(scale[[i]]$Score)])
Gervaise Henry's avatar
Gervaise Henry committed
439
440
441
    scale.scaled[[i]] <- as.integer((scale[[i]]$Score-min(scale[[i]]$Score))/(max(scale[[i]]$Score)-min(scale[[i]]$Score))*360)
    #scale.scaled[[i]] <- as.integer(scales::rescale(scale[[i]]$Score,to=c(0,1))*360)
    h[[i]] <- hist(scale[[i]]$Score,breaks=100,plot=FALSE)
Gervaise Henry's avatar
Gervaise Henry committed
442
    thresh[[i]] <- purrr::map_chr(thresh_methods,~auto_thresh(scale.scaled[[i]],.)) %>% tibble(method = thresh_methods, threshold = .)
443
    thresh[[i]]$threshold <- as.numeric(thresh[[i]]$threshold)
Gervaise Henry's avatar
Gervaise Henry committed
444
445
    thresh[[i]]$threshold <- ((thresh[[i]]$threshold/360)*(max(scale[[i]]$Score)-min(scale[[i]]$Score)))+min(scale[[i]]$Score)
    #thresh[[i]] <- thresh[[i]] %>% mutate(threshold=(scales::rescale(as.numeric(threshold)/360,to=range(scale[[i]]$Score))))
446
447
448
449
450
451
452
453
454
    postscript(paste0(folder,"Hist_qc.",i,".",feature,".eps"))
    plot(h[[i]],main=paste0("Histogram of ",feature," of sample ",i),xlab=feature)
    abline(v=thresh[[i]]$threshold)
    mtext(thresh[[i]]$method,side=1,line=2,at=thresh[[i]]$threshold,cex=0.5)
    dev.off()
  }
  
  
  return(thresh)
455
}
456

457
scCellCycle <- function(sc10x,sub=FALSE,sp="hu"){
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  #Runs Seurat based PCA analysis for cell cycle ID
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = s genes
  #results[3] = g2m genes
  
  #Make sub-folders if necessary
  if (sub==FALSE){
    folder <- "./analysis/qc/cellcycle/"
  } else {
    folder <- paste0("./analysis/qc/cellcycle/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }}
  
  #score cell cycle
  genes.cc <- readLines(con="./genesets/regev_lab_cell_cycle_genes.txt")
  genes.s <- genes.cc[1:43]
  genes.g2m <- genes.cc[44:97]
  sc10x <- NormalizeData(object=sc10x,verbose=FALSE)
  sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE)
  sc10x <- CellCycleScoring(object=sc10x,s.features=genes.s,g2m.features=genes.g2m,set.ident=TRUE)
  
  #plot cell cycle specific genes
487
488
489
490
491
492
493
  if (sp=="hu"){
    genes=c("PCNA","TOP2A","MCM6","MKI67")
    postscript(paste0(folder,"Violin_cc.Raw.eps"))
    plot <- VlnPlot(object=sc10x,features=genes,ncol=2,pt.size=1)
    plot(plot)
    dev.off()
  }
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
  
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Raw.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  # gc()
  # sc10x <- ScaleData(object=sc10x,vars.to.regress=c("S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=TRUE)
  # gc()
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Norm.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  
  results <- list(
    sc10x=sc10x,
    genes.s=genes.s,
    genes.g2m=genes.g2m
  )
  return(results)
}


518
scPC <- function(sc10x,pc=50,hpc=0.9,file="pre.stress",print="tsne"){
519
520
521
522
523
524
525
526
527
528
529
530
531
532
  #Scale Seurat object & calculate # of PCs to use
  
  #Inputs:
  #sc10x = Seruat object
  #pc = number of PCs to cacluate
  #hpc = max variance cutoff for PCs to use"
  #file = file for output
  
  #Outputs:
  #result[1] = Seurat object
  #result[2] = # of PCs to use
  
  #Run PCA
  Idents(object=sc10x) <- "ALL"
533
  sc10x <- RunPCA(object=sc10x,npcs=pc,verbose=FALSE,assay="integrated")
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
  
  #Calculate PCs to use
  pc.use <- sc10x[["pca"]]@stdev^2
  pc.use <- pc.use/sum(pc.use)
  pc.use <- cumsum(pc.use)
  pc.use <- min(which(pc.use>=hpc))
  
  postscript(paste0("./analysis/qc/Plot_PCElbow_",file,".eps"))
  plot <- ElbowPlot(object=sc10x,ndims=pc)
  plot <- plot+geom_vline(xintercept=pc.use,size=1,color="red")
  plot(plot)
  dev.off()
  
  results <- list(
    sc10x=sc10x,
    pc.use=pc.use
  )
  return(results)
}


555
556
scCCA <-  function(sc10x.l){
  for (i in 1:length(sc10x.l)){
557
    #sc10x.l[[i]] <- NormalizeData(sc10x.l[[i]],verbose=FALSE)
558
    gc()
559
560
    #sc10x.l[[i]] <- ScaleData(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose = FALSE)
    sc10x.l[[i]] <- SCTransform(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,assay="RNA")
561
    gc()
562
    #sc10x.l[[i]] <- FindVariableFeatures(sc10x.l[[i]],selection.method="vst",nfeatures=2000,verbose=FALSE)
563
564
  }
  
565
566
  sc10x.features <- SelectIntegrationFeatures(object.list=sc10x.l,nfeatures=3000)
  sc10x.l <- PrepSCTIntegration(object.list=sc10x.l,anchor.features=sc10x.features,verbose=FALSE)
567
568
569
570

  sc10x.l <- lapply(sc10x.l,FUN=function(x) { RunPCA(x,features=sc10x.features,verbose=FALSE) })
  
  sc10x.anchors <- FindIntegrationAnchors(object.list=sc10x.l,normalization.method="SCT",anchor.features=sc10x.features,verbose=FALSE,reduction="rpca",dims=1:30)
571
  sc10x <- IntegrateData(anchorset=sc10x.anchors,normalization.method="SCT",verbose=FALSE)
572
  
573
574
575
576
577
578
  #sc10x <- FindIntegrationAnchors(object.list=sc10x.l,dims=1:30,scale=FALSE)
  #sc10x <- IntegrateData(anchorset=sc10x,dims=1:30)
  
  #gc()
  #sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE,assay="integrated")
  #gc()
579
  
580
  gc()
581
  sc10x <- SCTransform(sc10x,vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,return.only.var.genes=FALSE,assay="RNA")
582
  gc()
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
  
  return(sc10x)
}


scCluster <- function(sc10x,res=0.1,red="pca",dim,print="tsne",folder=FALSE){
  #Cluster Seurat object and produce visualizations
  
  #Inputs:
  #sc10x = Seruat object
  #res = resolution to calculate clustering
  #red = rediction type to use for clustering
  #dim = number of dimentions to use for display
  #print = dimentionality reduction to use for display
  #folder = folder for output
  
  #Outputs:
  #result = Seurat object
  
  #Create subfolder if necessary
  if (folder==FALSE){
    sub <- ""
  } else {
    if (!dir.exists(paste0("./analysis/vis/",folder))){
      dir.create(paste0("./analysis/vis/",folder))
    }
    sub <- paste0(folder,"/")
    
  }
  
613
614
  DefaultAssay(sc10x) <- "integrated"

615
  #Calculste Vis
616
617
  sc10x <- RunTSNE(sc10x,dims=1:dim,reduction="pca",assay="integrated")
  sc10x <- RunUMAP(sc10x,dims=1:dim,reduction="pca",assay="integrated")
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
  
  sc10x <- FindNeighbors(sc10x,reduction=red,verbose=FALSE)
  
  for (i in res){
    sc10x <- FindClusters(sc10x,resolution=i,verbose=FALSE)
    
    plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      print(print2)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      print(print3)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,ncol=1)
      dev.off()
    }}
  
Gervaise Henry's avatar
Gervaise Henry committed
651
  for (i in c("samples","HTO_maxID","hash.ID")[c("samples","HTO_maxID","hash.ID") %in% colnames(sc10x@meta.data)]){
Gervaise Henry's avatar
Gervaise Henry committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    plot1 <- DimPlot(sc10x,reduction="pca",group.by=i)
    plot2 <- DimPlot(sc10x,reduction="tsne",group.by=i)
    plot3 <- DimPlot(sc10x,reduction="umap",group.by=i)
    legend <- cowplot::get_legend(plot1)
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      grid.arrange(plot2,legend,ncol=1)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      grid.arrange(plot3,legend,ncol=1)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,legend,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,legend,ncol=1)
      dev.off()
    }
679
  }
Gervaise Henry's avatar
Gervaise Henry committed
680
  
681
  DefaultAssay(sc10x) <- "SCT"
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
  
  return(sc10x)
}


scScore <- function(sc10x,score,geneset,cut.pt=0.9,anchor=FALSE){
  #Runs custom PCA analysis for stress ID
  
  #Inputs:
  #sc10x = Seruat object
  #score = name of geneset for scoring
  #geneset = geneset to use for ID
  #cut.pt = % of cells to keep
  
  #Outputs:
  #results[1] = Seurat object (original + score)
  #results[2] = Seurat object (negatively filtered)
  #results[3] = Seurat object (positively filtered)
  
  #Make subdirectory
  if (!dir.exists(paste0("./analysis/score_id/",score))){
    dir.create(paste0("./analysis/score_id/",score))
  }
  if (!dir.exists(paste0("./analysis/vis/",score))){
    dir.create(paste0("./analysis/vis/",score))
  }
  
  #Score geneset
710
  sc10x <- AddModuleScore(object=sc10x,features=geneset,name=score,assay="SCT")
711
712
713
714
  Idents(object=sc10x) <- paste0(score,"1")
  
  #CDF
  cdf <- ecdf(as.numeric(levels(sc10x)))
Gervaise Henry's avatar
Gervaise Henry committed
715
  if (cut.pt == "renyi"){
716
717
718
719

        h <- hist(data.frame(sc10x[[paste0(score,"1")]])[,paste0(score,"1")],breaks=1000,plot=FALSE)
	cutoff.temp <- mean(c(h$mids[which.max(h$counts)],h$mids[-which.max(h$counts)][which.max(h$counts[-which.max(h$counts)])]))
        cells.remove <- rownames(sc10x[[paste0(score,"1")]])[sc10x[[paste0(score,"1")]][,1] < cutoff.temp]
720
        sc10x.temp <- subset(sc10x,cells=cells.remove,invert=TRUE)
721
 
722
    thresh <- list()
723
    thresh[["all"]] <- scThresh(list(all=sc10x.temp),feature=paste0(score,"1"),sub=score)
Gervaise Henry's avatar
Gervaise Henry committed
724
    cut.x <- thresh$all$all$threshold[thresh$all$all$method=="RenyiEntropy"]
725
726
727
728
  } else {
    cut.x <- quantile(cdf,probs=cut.pt)
    cut.x <- unname(cut.x)
  }
729
730
731
732
733
734
735
736
737
738
739
740
741
742
  postscript(paste0("./analysis/score_id/",score,"/CDF_",score,".eps"))
  plot(cdf,main=paste0("Cumulative Distribution of ",score," Score"),xlab=paste0(score," Score"),ylab="CDF")
  abline(v=cut.x,col="red")
  dev.off()  
  
  #KDE
  postscript(paste0("./analysis/score_id/",score,"/Histo_",score,".eps"))
  plot(ggplot(data.frame(Score=as.numeric(levels(sc10x))),aes(x=Score))+geom_histogram(bins=100,aes(y=..density..))+geom_density()+geom_vline(xintercept=cut.x,size=1,color="red")+ggtitle(paste0(score," Score"))+cowplot::theme_cowplot())
  dev.off()
  
  Idents(object=sc10x) <- "ALL"
  predicate <- paste0(score,"1 >= ",cut.x)
  Idents(object=sc10x, cells = WhichCells(object=sc10x,expression= predicate)) <- score
  sc10x[[score]] <- Idents(object=sc10x)
743
  Idents(sc10x) <- score
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
  sc10x.negative <- subset(x=sc10x,idents="ALL")
  sc10x.positive <- subset(x=sc10x,idents=score)
  
  #Generate plots
  postscript(paste0("./analysis/vis/",score,"/3Vis_",score,".eps"))
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("ALL")
  plot2 <- DimPlot(sc10x.negative,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x.positive,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot4 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Negative")
  plot5 <- DimPlot(sc10x.negative,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot6 <- DimPlot(sc10x.positive,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot7 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Positive")
  plot8 <- DimPlot(sc10x.negative,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot9 <- DimPlot(sc10x.positive,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  grid.arrange(plot1,plot2,plot3,plot4,plot5,plot6,plot7,plot8,plot9,ncol=3)
  dev.off()
  
  #Generate violin plot of gene exvpression
  if (anchor!=FALSE){
    postscript(paste0("./analysis/score_id/",score,"/Violin_",score,".eps"))
764
    plot <- VlnPlot(object=sc10x,features=anchor,pt.size=0.1,assay="SCT")
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    plot(plot)
    dev.off()
  }
  
  results <- list(
    sc10x <- sc10x,
    sc10x.negative <- sc10x.negative,
    sc10x.positive <- sc10x.positive
  )
  return(results)
}


scQuSAGE <- function(sc10x,gs,save=FALSE,type,id,ds=0,nm="pops",print="tsne"){
  #Runs QuSAGE
  
  #Inputs:
  #sc10x = Seruat object
  #gs = geneset to use for correlation
  #save = save ID
  #type = type of qusage to run (id: create ID's based on run, sm: cor only using small genesets, lg: cor only with large genesets)
  #id = ident to use
  #nm = name of test
  #print = dimentionality reduction to use for display
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = correlation table
  #results[3] = correlation results
  
  if (!dir.exists(paste0("./analysis/cor/",nm))){
    dir.create(paste0("./analysis/cor/",nm))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/geneset"))){
    dir.create(paste0("./analysis/cor/",nm,"/geneset"))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/cluster"))){
    dir.create(paste0("./analysis/cor/",nm,"/cluster"))
  }
  if (!dir.exists(paste0("./analysis/vis/",nm))){
    dir.create(paste0("./analysis/vis/",nm))
  }
  
  Idents(object=sc10x) <- id
  number.clusters <- length(unique(levels(x=sc10x)))
  
  labels <- paste0("Cluster_",as.vector(Idents(object=sc10x)))
  
  cell.sample <- NULL
  for (i in unique(labels)){
    cell <- WhichCells(sc10x,ident=sub("Cluster_","",i))
    if (length(cell)>ds & ds!=0){
817
      set.seed(71682)
818
819
820
821
822
823
824
      rnd <- sample(1:length(cell),ds)
      cell <- cell[rnd]
    }
    cell.sample <- c(cell.sample,cell)
  }
  data <- as.data.frame(as.matrix(GetAssayData(sc10x[,colnames(sc10x) %in% cell.sample])))
  labels <- labels[colnames(sc10x) %in% cell.sample]
Gervaise Henry's avatar
Gervaise Henry committed
825
826
  #groups <- sort(unique(labels))
  groups <- paste0("Cluster_",levels(sc10x@active.ident))
827
  
Gervaise Henry's avatar
Gervaise Henry committed
828
829
  #col <- hcl(h=(seq(15,375-375/length(groups),length=length(groups))),c=100,l=65)
  col <- brewer.pal(n=length(groups),name="Dark2")
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
  
  #Make labels for QuSAGE
  clust <- list()
  clust.comp <- list()
  for (i in groups){
    t <- labels
    t[t != i] <- "REST"
    clust[i] <- list(i=t)
    rm(t)
    clust.comp[i] <- paste0(i,"-REST")
  }
  
  #Run QuSAGE
  for (i in groups){
    assign(paste0("results.",i),qusage(data,unlist(clust[i]),unlist(clust.comp[i]),gs))
  }
  
  #Generate ID table
  results.cor <- NULL
  results.cor <- qsTable(get(paste0("results.",groups[1])),number=length(gs))
  results.cor$Cluster <- groups[1]
  for (i in groups[-1]){
    qs <- qsTable(get(paste0("results.",i)),number=length(gs))
    qs$Cluster <- i
    results.cor <- rbind(results.cor,qs)
  }
  results.cor <- results.cor[,-3]
  rownames(results.cor) <- NULL
  
  results.clust.id <- NULL
860
861
862
863
  #if (max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
  #  results.clust.id <- results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2]),]
  if (max(results.cor[results.cor[,4]==groups[1],][,2],na.rm=TRUE)>=0){
    results.clust.id <- results.cor[results.cor[,4]==groups[1],][which.max(results.cor[results.cor[,4]==groups[1],][,2]),]
864
865
866
867
868
869
870
871
  } else {
    results.clust.id$pathway.name <- "Unknown"
    results.clust.id$log.fold.change <- 0
    results.clust.id$FDR <- 0
    results.clust.id$Cluster <- groups[1]
    results.clust.id <- as.data.frame(results.clust.id)
  }
  for (i in groups[-1]){
872
873
874
875
    #if (max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
    #  results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2]),])
    if (max(results.cor[results.cor[,4]==i,][,2],na.rm=TRUE)>=0){
      results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i,][which.max(results.cor[results.cor[,4]==i,][,2]),])
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    } else {
      results.clust.id <- rbind(results.clust.id,data.frame(pathway.name="Unknown",log.fold.change=0,FDR=0,Cluster=i))
    }}
  rownames(results.clust.id) <- NULL
  
  #Determine axes for correlation plots
  max.x.rg <- 0
  min.x.rg <- 0
  max.y.rg <- 0
  for (i in groups){
    qs <- get(paste0("results.",i))
    if (max(qs$path.mean)>max.x.rg){
      max.x.rg <- max(qs$path.mean)
    }
    if (min(qs$path.mean)<min.x.rg){
      min.x.rg <- min(qs$path.mean)
    }
    if (max(qs$path.PDF)>max.y.rg){
      max.y.rg <- max(qs$path.PDF)
    }}
  if (type=="sm"){
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    #Plot correlation plots by geneset
    for (i in 1:length(gs)){
      postscript(paste0("./analysis/cor/",nm,"/geneset/QuSAGE_",nm,".",names(gs)[i],".eps"))
      for (j in groups){
        qs <- get(paste0("results.",j))
        if (j==groups[1]){
          plotDensityCurves(qs,path.index=i,col=col[match(j,groups)],main=names(gs)[i],xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=i,add=TRUE,col=col[match(j,groups)],lwd=5)
        }}
      legend("topright",col=col,legend=groups,lty=1,lwd=5,cex=2,ncol=1,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    #Plot correlation plots by cluster
    for (i in groups){
      qs <- get(paste0("results.",i))
      postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
      for (j in 1:length(gs)){
        if (j==1){
          plotDensityCurves(qs,path.index=j,col=viridis(length(gs))[j],main=i,xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=j,add=TRUE,col=viridis(length(gs))[j],lwd=5)
        }}
      legend("topright",col=viridis(length(gs)),legend=names(gs),lty=1,lwd=5,cex=1,ncol=2,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }} else {
      for (i in groups){
        qs <- get(paste0("results.",i))
        postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
        plotCIs(qs,path.index=1:numPathways(qs),cex.lab=1.5)
        dev.off()
      }}
  
  if (save==TRUE){
    merge.cluster <- NULL
    for (i in groups){
935
936
937
938
      #if (max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)>=0){
      #  sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)][1],"')")))
      if (max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)>=0){
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)][1],"')")))
939
940
941
942
943
944
945
946
947
948
949
      } else {
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = 'Unknown')")))
      }}
    sc10x[[nm]] <- Idents(object=sc10x)
  }
  
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",nm,"/tSNE_",id,"_",nm,".eps"))
Gervaise Henry's avatar
Gervaise Henry committed
950
    print(plot2)
951
952
953
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",nm,"/UMAP_",id,"_",nm,".eps"))
Gervaise Henry's avatar
Gervaise Henry committed
954
    print(plot3)
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    dev.off()
  } else if (print=="2"){
    postscript(paste0("./analysis/vis/",nm,"/2Vis_",id,"_",nm,".eps"))
    grid.arrange(plot2,plot3,ncol=1)
    dev.off()
  } else if (print=="3"){
    postscript(paste0("./analysis/vis/",nm,"/3Vis_",id,"_",nm,".eps"))
    grid.arrange(plot1,plot2,plot3,ncol=1)
    dev.off()
  }
  
  results <- list(
    sc10x=sc10x,
    results.cor=results.cor,
    results.clust.id=results.clust.id
  )
  names(results)=c("sc10x",paste0("results.cor.",nm),paste0("results.clust.",nm,".id"))
  return(results)
}
974

975
976
977
978
979
980
981
982
983
984
985
986
987
988
scShinyOutput <- function(sc10x,anal="raw"){
  write_delim(as.data.frame(colnames(sc10x)),path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/barcodes.tsv.gz"),delim="\t",col_names=FALSE)
  features <- rownames(sc10x)
  features <- c(features,c("nFeature","nCount","percent.mito","percent.ribo","Stress.score"))
  features <- data.frame(ENSG=features,Feature=features,Label="feature")
  write_delim(features,path=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/features.tsv.gz"),delim="\t",col_names=FALSE)
  exp <- GetAssayData(sc10x,slot="scale.data")
  exp.extra <- matrix(nrow=5,ncol=ncol(sc10x))
  exp.extra[1,] <- as.numeric(sc10x$nFeature_RNA)
  exp.extra[2,] <- as.numeric(sc10x$nCount_RNA)
  exp.extra[3,] <- as.numeric(sc10x$percent.mito)
  exp.extra[4,] <- as.numeric(sc10x$percent.ribo)
  exp.extra[5,] <- as.numeric(sc10x$Stress1)
  exp <- rbind(exp,exp.extra)
Gervaise Henry's avatar
Gervaise Henry committed
989
  Matrix::writeMM(as(exp,"dgCMatrix"),file=paste0("./analysis/shiny/",anal,"/outs/filtered_feature_bc_matrix/matrix.mtx.gz"))
990
991
992
993
994
995
996
997
998
999
1000
1001
  for (i in c("pca","tsne","umap")){
    dr <- Embeddings(sc10x,i)
    if (i != "pca"){
      colnames(dr) <- c(paste0(toupper(i),"-",1:2))
    } else {
      dr <- dr[,1:10]
      colnames(dr) <- c(paste0(toupper(i),"-",1:10))
    }
    dr <- cbind(dr,Barcode=rownames(dr))
    dr <- dr[,c(3,1,2)]
    dr <- as.data.frame(dr,row.names=FALSE)
    if (i != "pca"){
1002
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/2_components/projection.csv"),col_names=TRUE)
1003
    } else {
1004
      write_csv(dr,paste0("./analysis/shiny/",anal,"/outs/analysis/",i,"/10_components/projection.csv"),col_names=TRUE)
1005
1006
    }
  }
1007
  sc10x <- NormalizeData(sc10x,assay="RNA")
Gervaise Henry's avatar
Gervaise Henry committed
1008
  clusters <- c("samples","samples_HTO",paste0("integrated_snn_res.",res),"lin","pops","leu","scDWSpr","HTO_maxID","hash.ID")
1009
1010
  clusters <- intersect(clusters,names(sc10x@meta.data))
  for (i in clusters){
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    if (nrow(unique(sc10x[[i]]))>1){
      if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))){
        dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i)))
      }
      clust <- as.matrix(sc10x[[i]])
      colnames(clust) <- "Cluster"
      clust <- cbind(clust,Barcode=rownames(clust))
      clust <- clust[,c(2,1)]
      clust <- as.data.frame(clust,row.names=FALSE)
      clust[,2] <- paste0("Cluster ",clust[,2])
      write_csv(clust,paste0("./analysis/shiny/",anal,"/outs/analysis/clustering/",gsub("integrated_snn_res.","res_",i),"/clusters.csv"),col_names=TRUE)
  
      if (!dir.exists(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))){
        dir.create(paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i)))
      }
      Idents(sc10x) <- i
      deg <- FindAllMarkers(sc10x,assay="RNA",slot="data",logfc.threshold=0,test.use="MAST",min.pct=0.25,min.diff.pct=0.25,max.cells.per.ident=500)
      dexp <- data.frame("Feature ID"=unique(deg$gene),"Feature Name"=unique(deg$gene))
      for (cluster in unique(deg$cluster)){
        dexp[,paste0("Cluster.",cluster,".Mean.Counts")] <- deg$pct.1[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
        dexp[,paste0("Cluster.",cluster,".Log2.fold.change")] <- deg$avg_logFC[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
        dexp[,paste0("Cluster.",cluster,".Adjusted.p.value")] <- deg$p_val_adj[deg$cluster==cluster][match(dexp$Feature.ID,deg$gene[deg$cluster==cluster])]
      }
      colnames(dexp) <- gsub("\\."," ",colnames(dexp))
      write_csv(dexp,paste0("./analysis/shiny/",anal,"/outs/analysis/diffexp/",gsub("integrated_snn_res.","res_",i),"/differential_expression.csv"),col_names=TRUE)
1036
    }
1037
  }
1038
}