sc-TissueMapper_functions.R 31.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#sc-TissueMapper
#Author: Gervaise H. Henry
#Email: gervaise.henry@utsouthwestern.edu
#Lab: Strand Lab, Deparment of Urology, University of Texas Southwestern Medical Center


scFolders <- function(){
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
11
12
13
14
15
16
  if (!dir.exists("./analysis/qc/")){
    dir.create("./analysis/qc/")
  }
  if (!dir.exists("./analysis/qc/cutoffs/")){
    dir.create("./analysis/qc/cutoffs/")
  }
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  if (!dir.exists("./analysis/qc/cellcycle")){
    dir.create("./analysis/qc/cellcycle")
  }
  if (!dir.exists("./analysis/vis")){
    dir.create("./analysis/vis")
  }
  if (!dir.exists("./analysis/score_id")){
    dir.create("./analysis/score_id")
  }
  if (!dir.exists("./analysis/cor")){
    dir.create("./analysis/cor")
  }
}


32
scLoad <- function(p,cellranger=3,aggr=TRUE){
33
34
35
36
  #Load and prefilter filtered_gene_bc_matrices_mex output from cellranger
  
  #Inputs:
  #p = project name
37
38
  #cellranger cellranger version number used for count/aggr, 2 or 3
  #aggr = if the samples are already aggregated, TRUE if useing the output of aggr, FALSE if using outputs of each count
39
40
  
  #Outputs:
41
42
  #sc10x = Seurat object list
  #sc10x.groups = group labels for each sample
43
44
  
  
45
46
47
48
49
50
51
  sc10x.groups <- read_csv(paste0("./analysis/DATA/",p,"-demultiplex.csv"))
  
  
  #Load filtered_gene_bc_matrices output from cellranger
  sc10x.data <- list()
  sc10x <- list()
  if (aggr==TRUE){
52
    if (cellranger==2){
53
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_gene_bc_matrices_mex/"))
54
    } else {
55
      sc10x.data[aggr] <- Read10X(data.dir=paste0("./analysis/DATA/10x/filtered_feature_bc_matrix/"))
56
    }
57
    sc10x[aggr] <- new("seurat",raw.data=sc10x.data[aggr])
58
  } else {
59
60
61
62
63
64
65
66
    for (i in sc10x.groups$Samples){
      if (cellranger==2){
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_gene_bc_matrices/"))
      } else {
        sc10x.data[i] <- Read10X(data.dir=paste0("./analysis/DATA/10x/",i,"/filtered_feature_bc_matrix/"))
      }
      sc10x[i] <- CreateSeuratObject(counts=sc10x.data[[i]],project=p)
      sc10x[[i]]$samples <- i
67
    }
68
69
  }
  
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  # #Label sample names from aggregation_csv.csv
  # if (sub==FALSE){
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation_csv.csv")
  #   } else {
  #     sc10x.aggr <- read_csv("./analysis/DATA/10x/aggregation.csv")
  #   }
  # } else {
  #   if (cellranger==2){
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation_csv.csv"))
  #   } else {
  #     sc10x.aggr <- read_csv(paste0("./analysis/DATA/",p,"/10x/aggregation.csv"))
  #   }
  # }
  # cell.codes <- as.data.frame(sc10x@raw.data@Dimnames[[2]])
  # colnames(cell.codes) <- "barcodes"
  # rownames(cell.codes) <- cell.codes$barcodes
  # cell.codes$lib.codes <- as.factor(gsub(pattern=".+-",replacement="",cell.codes$barcodes))
  # cell.codes$samples <- sc10x.aggr$library_id[match(cell.codes$lib.codes,as.numeric(rownames(sc10x.aggr)))]
  # sc10x <- CreateSeuratObject(counts=sc10x.data,project=p,assay="RNA",min.cells=mc,min.features=mg,meta.data=cell.codes["samples"])
  # 
  # #Create groups found in demultiplex.csv
  # for (i in 2:ncol(sc10x.demultiplex)){
  #   Idents(sc10x) <- "samples"
  #   merge.cluster <- apply(sc10x.demultiplex[,i],1,as.character)
  #   merge.cluster[merge.cluster==1] <- colnames(sc10x.demultiplex[,i])
  #   
  #   Idents(sc10x) <- plyr::mapvalues(x=Idents(sc10x),from=sc10x.demultiplex$Samples,to=merge.cluster)
  #   sc10x@meta.data[,colnames(sc10x.demultiplex[,i])] <- Idents(sc10x)
  # }
  
  
  results <- list(
    sc10x=sc10x,
    sc10x.groups=sc10x.groups
  )
  return(results)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
}


scSubset <- function(sc10x,i="ALL",g="ALL"){
  #Subset cells based on an identity
  
  #Inputs:
  #sc10x = seruat object
  #i = identity to use
  #g = group to subset by
  
  #Outputs:
  #Seurat object
  
  
122
  Idents(sc10x) <- i
123
124
  sc10x.sub <- subset(x=sc10x,idents=g)
  
125
  
126
127
128
129
  return(sc10x.sub)
}


130
scQC <- function(sc10x,sp="hu"){
131
132
133
134
135
136
137
  #QC and filter Seurat object
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
138
  #result[1] = filtered Seurat object
139
140
141
142
143
144
  #result[2] = raw cell count
  #result[3] = raw gene count
  #result[4] = filtered cell count
  #result[5] = filtered gene count
  
  
145
  #Calculate percent mitochondrea
146
  if (sp=="hu"){
147
148
149
    mito.pattern <- "^MT-"
  } else if (sp=="mu"){
    mito.pattern <- "^mt-"
150
  }
151
152
153
  for (i in names(sc10x)){
    sc10x.temp <- sc10x[[i]]
    sc10x.temp[["percent.mito"]] <- PercentageFeatureSet(object=sc10x.temp,pattern=mito.pattern)
154
    #sc10x.temp <- subset(sc10x.temp,cell=names(which(is.na(sc10x.temp$percent.mito))),invert=TRUE)
155
    sc10x[i] <- sc10x.temp
156
  }
157
  
158
159
160
161
162
163
164
  #Calculate cutoffs
  thresh <- list()
  h <- list()
  cells.remove <- list()
  sc10x.temp <- list()
  thresh.l <- list()
  cutoff.l.mito <- list()
165
  for (i in c("nFeature_RNA","percent.mito")){
166
167
168
169
170
171
172
    thresh[[i]] <- scThresh(sc10x,feature=i)
    if (i == "percent.mito"){
      for (j in names(sc10x)){
        cutoff.l.mito[[j]] <- NULL
        h[[i]] <- hist(data.frame(sc10x[[j]][[i]])$percent.mito,breaks=1000,plot=FALSE)
        cutoff.temp <- mean(c(h[[i]]$mids[which.max(h[[i]]$counts)],h[[i]]$mids[-which.max(h[[i]]$counts)][which.max(h[[i]]$counts[-which.max(h[[i]]$counts)])]))
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][["percent.mito"]])[sc10x[[j]][[i]][,1] > cutoff.temp])
173
        sc10x.temp[[j]] <- subset(sc10x[[j]],cells=setdiff(colnames(sc10x[[j]]),cells.remove[[j]]))
174
175
        thresh.l[[i]] <- scThresh(sc10x.temp,feature=i,sub="lower")
        cutoff.l.mito[[j]] <- thresh.l[[i]][[j]]$threshold[thresh.l[[i]][[j]]$method=="Triangle"]
176
      }
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    }
  }
  
  #Plot raw stats
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
  for (i in names(sc10x)){
    if (max.ct < max(sc10x[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x[[i]][["percent.mito"]])){
      max.mt <- max(sc10x[[i]][["percent.mito"]])
    }
  }
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
  cells.remove <- list()
  for (i in c("nCount_RNA","nFeature_RNA","percent.mito")){
    max.y <- 0
    if (i == "nCount_RNA"){
      cells.remove[[j]] <- NULL
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x)){
      sc10x.temp <- sc10x[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
      if (i %in% c("nFeature_RNA","percent.mito")){
        if (i == "nFeature_RNA"){
          cutoff.l <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="MinErrorI"]
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="RenyiEntropy"]
        } else {
          cutoff.l <- cutoff.l.mito[[j]]
          cutoff.h <- thresh[[i]][[j]]$threshold[thresh[[i]][[j]]$method=="Triangle"]
        }
        plots.v[[j]] <- plots.v[[j]]+geom_hline(yintercept=cutoff.l,size=0.5,color="red")+geom_hline(yintercept=cutoff.h,size=0.5,color="red")
        densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5))+geom_hline(yintercept=cutoff.l,size=0.1,color="red")+geom_hline(yintercept=cutoff.h,size=0.1,color="red"))
        cells.remove[[j]] <- c(cells.remove[[j]],rownames(sc10x[[j]][[i]])[sc10x[[j]][[i]][,1] < cutoff.l | sc10x[[j]][[i]][,1] > cutoff.h])
227
      }
Gervaise Henry's avatar
Gervaise Henry committed
228
229
230
231
      ggsave(paste0("./analysis/qc/Violin_qc.raw.",i,".",j,".eps"),plot=plots.v[[j]])
      if (i %in% c("nFeature_RNA","percent.mito")){
        ggsave(paste0("./analysis/qc/Plot_qc.raw.",i,".",j,".eps"),plot=plots.s[[j]])
      }
232
    }
233
  }
234
  
235
236
237
238
239
240
241
242
243
  #Record cell/gene counts pre and post filtering
  counts.cell.raw <- list()
  counts.gene.raw <- list()
  sc10x.sub <- list()
  counts.cell.filtered <- list()
  counts.gene.filtered <- list()
  for (i in names(sc10x)){
    counts.cell.raw[i] <- ncol(GetAssayData(object=sc10x[[i]],slot="counts"))
    counts.gene.raw[i] <- nrow(GetAssayData(object=sc10x[[i]],slot="counts"))
244
    sc10x.sub[[i]] <- subset(sc10x[[i]],cells=setdiff(colnames(sc10x[[i]]),cells.remove[[i]]))
245
246
247
    counts.cell.filtered[i] <- ncol(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
    counts.gene.filtered[i] <- nrow(GetAssayData(object=sc10x.sub[[i]],slot="counts"))
  }
248
249
  
  #Plot filtered stats
250
251
252
253
254
255
256
257
258
259
260
261
262
  max.ct <- 0
  max.ft <- 0
  max.mt <- 0
  for (i in names(sc10x)){
    if (max.ct < max(sc10x.sub[[i]][["nCount_RNA"]])){
      max.ct <- max(sc10x.sub[[i]][["nCount_RNA"]])
    }
    if (max.ft < max(sc10x.sub[[i]][["nFeature_RNA"]])){
      max.ft <- max(sc10x.sub[[i]][["nFeature_RNA"]])
    }
    if (max.mt < max(sc10x.sub[[i]][["percent.mito"]])){
      max.mt <- max(sc10x.sub[[i]][["percent.mito"]])
    }
263
  }
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
  max.ct <- max.ct*1.1
  max.ft <- max.ft*1.1
  max.mt <- max.mt*1.1
  for (i in c("nCount_RNA","nFeature_RNA","percent.mito")){
    max.y <- 0
    if (i == "nCount_RNA"){
      max.y <- max.ct
    } else if (i == "nFeature_RNA"){
      max.y <- max.ft
    } else if (i == "percent.mito"){
      max.y <- max.mt
    }
    plots.v <- list()
    densities.s <- list()
    plots.s <- list()
    for (j in names(sc10x.sub)){
      sc10x.temp <- sc10x.sub[[j]]
      plots.v[[j]] <- VlnPlot(object=sc10x.temp,features=i,pt.size=0.1,)+scale_x_discrete(labels=j)+scale_y_continuous(limits=c(0,max.y))+theme(legend.position="none",axis.text.x=element_text(hjust=0.5,angle=0))
      if (i %in% c("nFeature_RNA","percent.mito")){
        densities.s[[j]] <- density(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1],n=1000)
        plots.s[[j]] <- ggplotGrob(ggplot(data.frame(cbind(sc10x.temp$nCount_RNA,sc10x.temp[[i]][,1])))+geom_point(aes(x=X1,y=X2,color=densities.s[[j]]),size=0.1)+scale_x_continuous(limits=c(0,max.ct))+scale_y_continuous(limits=c(0,max.y))+scale_color_viridis(option="inferno")+labs(x="nCount",y=i,color="Density")+ggtitle(j)+cowplot::theme_cowplot()+theme(plot.title=element_text(size=7.5),axis.title=element_text(size=7.5),axis.text=element_text(size=5,angle=45),legend.position="bottom",legend.title=element_text(size=5,face="bold",vjust=1),legend.text=element_text(size=5,angle=45))+guides(color=guide_colourbar(barwidth=5,barheight=0.5)))
      }
286
287
288
289
290
      ggsave(paste0("./analysis/qc/Violin_qc.filtered.",i,".",j,".eps"),plot=plots.v[[j]])
      if (i %in% c("nFeature_RNA","percent.mito")){
        ggsave(paste0("./analysis/qc/Plot_qc.filtered.",i,".",j,".eps"),plot=plots.s[[j]])
      }

291
292
293
    }
  }
  
294
295
296
297
298
299
300
301
302
303
304
  
  results <- list(
    sc10x=sc10x.sub,
    counts.cell.raw=counts.cell.raw,
    counts.gene.raw=counts.gene.raw,
    counts.cell.filtered=counts.cell.filtered,
    counts.gene.filtered=counts.gene.filtered
  )
  return(results)
}

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
scThresh <- function(sc10x,feature,sub=FALSE){
  #Calculate thresholds and cutoffs
  
  #Inputs:
  #sc10x = Seruat object
  #feature = feature to threshold
  #sub = Subfolder to save output files
  
  #Outputs:
  #result = Threshold data
  
  
  #Make folders
  if (sub==FALSE){
    folder <- "./analysis/qc/cutoffs/"
  } else {
    folder <- paste0("./analysis/qc/cutoffs/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }
325
326
  }
  
327
328
329
330
331
332
333
  #Calculate range of histogram based threholding and manually select methods for cutoffs
  scale <- list()
  scale.scaled <- list()
  h <- list()
  thresh <-list()
  cutoff.l <- list()
  cutoff.h <- list()
Gervaise Henry's avatar
Gervaise Henry committed
334
  thresh_methods <- c("IJDefault","Huang","Huang2","Intermodes","IsoData","Li","Mean","MinErrorI","Moments","Otsu","Percentile","RenyiEntropy","Shanbhag","Triangle")
335
336
337
338
  for (i in names(sc10x)){
    scale[[i]] <- data.frame(Score=sc10x[[i]][[feature]])
    colnames(scale[[i]]) <- "Score"
    scale[[i]] <- data.frame(Score=scale[[i]]$Score[!is.na(scale[[i]]$Score)])
Gervaise Henry's avatar
Gervaise Henry committed
339
340
341
    scale.scaled[[i]] <- as.integer((scale[[i]]$Score-min(scale[[i]]$Score))/(max(scale[[i]]$Score)-min(scale[[i]]$Score))*360)
    #scale.scaled[[i]] <- as.integer(scales::rescale(scale[[i]]$Score,to=c(0,1))*360)
    h[[i]] <- hist(scale[[i]]$Score,breaks=100,plot=FALSE)
342
343
344
    thresh[[i]] <- purrr::map_chr(thresh_methods, ~auto_thresh(scale.scaled[[i]], .)) %>% 
      tibble(method = thresh_methods, threshold = .)
    thresh[[i]]$threshold <- as.numeric(thresh[[i]]$threshold)
Gervaise Henry's avatar
Gervaise Henry committed
345
346
    thresh[[i]]$threshold <- ((thresh[[i]]$threshold/360)*(max(scale[[i]]$Score)-min(scale[[i]]$Score)))+min(scale[[i]]$Score)
    #thresh[[i]] <- thresh[[i]] %>% mutate(threshold=(scales::rescale(as.numeric(threshold)/360,to=range(scale[[i]]$Score))))
347
348
349
350
351
352
353
354
355
    postscript(paste0(folder,"Hist_qc.",i,".",feature,".eps"))
    plot(h[[i]],main=paste0("Histogram of ",feature," of sample ",i),xlab=feature)
    abline(v=thresh[[i]]$threshold)
    mtext(thresh[[i]]$method,side=1,line=2,at=thresh[[i]]$threshold,cex=0.5)
    dev.off()
  }
  
  
  return(thresh)
356
}
357

358
scCellCycle <- function(sc10x,sub=FALSE,sp="hu"){
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  #Runs Seurat based PCA analysis for cell cycle ID
  
  #Inputs:
  #sc10x = Seruat object
  #sub = Subfolder to save output files
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = s genes
  #results[3] = g2m genes
  
  #Make sub-folders if necessary
  if (sub==FALSE){
    folder <- "./analysis/qc/cellcycle/"
  } else {
    folder <- paste0("./analysis/qc/cellcycle/",sub,"/")
    if (!dir.exists(folder)){
      dir.create(folder)
    }}
  
  #score cell cycle
  genes.cc <- readLines(con="./genesets/regev_lab_cell_cycle_genes.txt")
  genes.s <- genes.cc[1:43]
  genes.g2m <- genes.cc[44:97]
  sc10x <- NormalizeData(object=sc10x,verbose=FALSE)
  sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE)
  sc10x <- CellCycleScoring(object=sc10x,s.features=genes.s,g2m.features=genes.g2m,set.ident=TRUE)
  
  #plot cell cycle specific genes
388
389
390
391
392
393
394
  if (sp=="hu"){
    genes=c("PCNA","TOP2A","MCM6","MKI67")
    postscript(paste0(folder,"Violin_cc.Raw.eps"))
    plot <- VlnPlot(object=sc10x,features=genes,ncol=2,pt.size=1)
    plot(plot)
    dev.off()
  }
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
  
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Raw.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  # gc()
  # sc10x <- ScaleData(object=sc10x,vars.to.regress=c("S.Score","G2M.Score"),do.par=TRUE,num.cores=45,verbose=TRUE)
  # gc()
  # sc10x <- RunPCA(object=sc10x,features=c(genes.s,genes.g2m),npcs=2,verbose=FALSE)
  # postscript(paste0(folder,"PCA_cc.Norm.eps"))
  # plot <- DimPlot(object=sc10x,reduction="pca")
  # plot(plot)
  # dev.off()
  
  results <- list(
    sc10x=sc10x,
    genes.s=genes.s,
    genes.g2m=genes.g2m
  )
  return(results)
}


419
scPC <- function(sc10x,pc=50,hpc=0.9,file="pre.stress",print="tsne"){
420
421
422
423
424
425
426
427
428
429
430
431
432
433
  #Scale Seurat object & calculate # of PCs to use
  
  #Inputs:
  #sc10x = Seruat object
  #pc = number of PCs to cacluate
  #hpc = max variance cutoff for PCs to use"
  #file = file for output
  
  #Outputs:
  #result[1] = Seurat object
  #result[2] = # of PCs to use
  
  #Run PCA
  Idents(object=sc10x) <- "ALL"
434
  sc10x <- RunPCA(object=sc10x,npcs=pc,verbose=FALSE,assay="integrated")
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  
  #Calculate PCs to use
  pc.use <- sc10x[["pca"]]@stdev^2
  pc.use <- pc.use/sum(pc.use)
  pc.use <- cumsum(pc.use)
  pc.use <- min(which(pc.use>=hpc))
  
  postscript(paste0("./analysis/qc/Plot_PCElbow_",file,".eps"))
  plot <- ElbowPlot(object=sc10x,ndims=pc)
  plot <- plot+geom_vline(xintercept=pc.use,size=1,color="red")
  plot(plot)
  dev.off()
  
  results <- list(
    sc10x=sc10x,
    pc.use=pc.use
  )
  return(results)
}


456
457
scCCA <-  function(sc10x.l){
  for (i in 1:length(sc10x.l)){
458
    #sc10x.l[[i]] <- NormalizeData(sc10x.l[[i]],verbose=FALSE)
459
    gc()
460
461
    #sc10x.l[[i]] <- ScaleData(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose = FALSE)
    sc10x.l[[i]] <- SCTransform(sc10x.l[[i]],vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,assay="RNA")
462
    gc()
463
    #sc10x.l[[i]] <- FindVariableFeatures(sc10x.l[[i]],selection.method="vst",nfeatures=2000,verbose=FALSE)
464
465
  }
  
466
467
468
469
  sc10x.features <- SelectIntegrationFeatures(object.list=sc10x.l,nfeatures=3000)
  sc10x.l <- PrepSCTIntegration(object.list=sc10x.l,anchor.features=sc10x.features,verbose=FALSE)
  sc10x.anchors <- FindIntegrationAnchors(object.list=sc10x.l, normalization.method="SCT",anchor.features=sc10x.features,verbose=FALSE)
  sc10x <- IntegrateData(anchorset=sc10x.anchors,normalization.method="SCT",verbose=FALSE)
470
  
471
472
473
474
475
476
  #sc10x <- FindIntegrationAnchors(object.list=sc10x.l,dims=1:30,scale=FALSE)
  #sc10x <- IntegrateData(anchorset=sc10x,dims=1:30)
  
  #gc()
  #sc10x <- ScaleData(object=sc10x,do.par=TRUE,num.cores=45,verbose=FALSE,assay="integrated")
  #gc()
477
  
478
  gc()
479
  sc10x <- SCTransform(sc10x,vars.to.regress=c("nFeature_RNA","percent.mito"),verbose=FALSE,return.only.var.genes=FALSE,assay="RNA")
480
  gc()
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
  
  return(sc10x)
}


scCluster <- function(sc10x,res=0.1,red="pca",dim,print="tsne",folder=FALSE){
  #Cluster Seurat object and produce visualizations
  
  #Inputs:
  #sc10x = Seruat object
  #res = resolution to calculate clustering
  #red = rediction type to use for clustering
  #dim = number of dimentions to use for display
  #print = dimentionality reduction to use for display
  #folder = folder for output
  
  #Outputs:
  #result = Seurat object
  
  #Create subfolder if necessary
  if (folder==FALSE){
    sub <- ""
  } else {
    if (!dir.exists(paste0("./analysis/vis/",folder))){
      dir.create(paste0("./analysis/vis/",folder))
    }
    sub <- paste0(folder,"/")
    
  }
  
511
512
  DefaultAssay(sc10x) <- "integrated"

513
  #Calculste Vis
514
515
  sc10x <- RunTSNE(sc10x,dims=1:dim,reduction="pca",assay="integrated")
  sc10x <- RunUMAP(sc10x,dims=1:dim,reduction="pca",assay="integrated")
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
  
  sc10x <- FindNeighbors(sc10x,reduction=red,verbose=FALSE)
  
  for (i in res){
    sc10x <- FindClusters(sc10x,resolution=i,verbose=FALSE)
    
    plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
    plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
    
    if (print=="tsne"){
      postscript(paste0("./analysis/vis/",sub,"tSNE_",i,".eps"))
      print(print2)
      dev.off()
    } else if (print=="umap"){
      postscript(paste0("./analysis/vis/",sub,"UMAP_",i,".eps"))
      print(print3)
      dev.off()
    } else if (print=="2"){
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"2Vis_",i,".eps"))
      grid.arrange(plot2,plot3,ncol=1)
      dev.off()
    } else if (print=="3"){
      plot1 <- plot1+theme(legend.position="none")
      plot2 <- plot2+theme(legend.position="none")
      plot3 <- plot3+theme(legend.position="none")
      postscript(paste0("./analysis/vis/",sub,"3Vis_",i,".eps"))
      grid.arrange(plot1,plot2,plot3,ncol=1)
      dev.off()
    }}
  
  plot1 <- DimPlot(sc10x,reduction="pca",group.by="samples")
  plot2 <- DimPlot(sc10x,reduction="tsne",group.by="samples")
  plot3 <- DimPlot(sc10x,reduction="umap",group.by="samples")
  legend <- cowplot::get_legend(plot1)
553
  
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",sub,"tSNE_samples.eps"))
    grid.arrange(plot2,legend,ncol=1)
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",sub,"UMAP_samples.eps"))
    grid.arrange(plot3,legend,ncol=1)
    dev.off()
  } else if (print=="2"){
    plot2 <- plot2+theme(legend.position="none")
    plot3 <- plot3+theme(legend.position="none")
    postscript(paste0("./analysis/vis/",sub,"2Vis_samples.eps"))
    grid.arrange(plot2,plot3,legend,ncol=1)
    dev.off()
  } else if (print=="3"){
    plot1 <- plot1+theme(legend.position="none")
    plot2 <- plot2+theme(legend.position="none")
    plot3 <- plot3+theme(legend.position="none")
    postscript(paste0("./analysis/vis/",sub,"3Vis_samples.eps"))
    grid.arrange(plot1,plot2,plot3,legend,ncol=1)
    dev.off()
  }
576
577

  DefaultAssay(sc10x) <- "SCT"
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
  
  return(sc10x)
}


scScore <- function(sc10x,score,geneset,cut.pt=0.9,anchor=FALSE){
  #Runs custom PCA analysis for stress ID
  
  #Inputs:
  #sc10x = Seruat object
  #score = name of geneset for scoring
  #geneset = geneset to use for ID
  #cut.pt = % of cells to keep
  
  #Outputs:
  #results[1] = Seurat object (original + score)
  #results[2] = Seurat object (negatively filtered)
  #results[3] = Seurat object (positively filtered)
  
  #Make subdirectory
  if (!dir.exists(paste0("./analysis/score_id/",score))){
    dir.create(paste0("./analysis/score_id/",score))
  }
  if (!dir.exists(paste0("./analysis/vis/",score))){
    dir.create(paste0("./analysis/vis/",score))
  }
  
  #Score geneset
606
  sc10x <- AddModuleScore(object=sc10x,features=geneset,name=score,assay="SCT")
607
608
609
610
  Idents(object=sc10x) <- paste0(score,"1")
  
  #CDF
  cdf <- ecdf(as.numeric(levels(sc10x)))
Gervaise Henry's avatar
Gervaise Henry committed
611
  if (cut.pt == "renyi"){
612
613
    thresh <- list()
    thresh[["all"]] <- scThresh(list(all=sc10x),feature=paste0(score,"1"),sub=score)
Gervaise Henry's avatar
Gervaise Henry committed
614
    cut.x <- thresh$all$all$threshold[thresh$all$all$method=="RenyiEntropy"]
615
616
617
618
  } else {
    cut.x <- quantile(cdf,probs=cut.pt)
    cut.x <- unname(cut.x)
  }
619
620
621
622
623
624
625
626
627
628
629
630
631
632
  postscript(paste0("./analysis/score_id/",score,"/CDF_",score,".eps"))
  plot(cdf,main=paste0("Cumulative Distribution of ",score," Score"),xlab=paste0(score," Score"),ylab="CDF")
  abline(v=cut.x,col="red")
  dev.off()  
  
  #KDE
  postscript(paste0("./analysis/score_id/",score,"/Histo_",score,".eps"))
  plot(ggplot(data.frame(Score=as.numeric(levels(sc10x))),aes(x=Score))+geom_histogram(bins=100,aes(y=..density..))+geom_density()+geom_vline(xintercept=cut.x,size=1,color="red")+ggtitle(paste0(score," Score"))+cowplot::theme_cowplot())
  dev.off()
  
  Idents(object=sc10x) <- "ALL"
  predicate <- paste0(score,"1 >= ",cut.x)
  Idents(object=sc10x, cells = WhichCells(object=sc10x,expression= predicate)) <- score
  sc10x[[score]] <- Idents(object=sc10x)
633
  Idents(sc10x) <- score
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
  sc10x.negative <- subset(x=sc10x,idents="ALL")
  sc10x.positive <- subset(x=sc10x,idents=score)
  
  #Generate plots
  postscript(paste0("./analysis/vis/",score,"/3Vis_",score,".eps"))
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("ALL")
  plot2 <- DimPlot(sc10x.negative,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x.positive,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot4 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Negative")
  plot5 <- DimPlot(sc10x.negative,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot6 <- DimPlot(sc10x.positive,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot7 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")+ggtitle("Positive")
  plot8 <- DimPlot(sc10x.negative,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot9 <- DimPlot(sc10x.positive,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  grid.arrange(plot1,plot2,plot3,plot4,plot5,plot6,plot7,plot8,plot9,ncol=3)
  dev.off()
  
  #Generate violin plot of gene exvpression
  if (anchor!=FALSE){
    postscript(paste0("./analysis/score_id/",score,"/Violin_",score,".eps"))
654
    plot <- VlnPlot(object=sc10x,features=anchor,pt.size=0.1,assay="SCT")
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    plot(plot)
    dev.off()
  }
  
  results <- list(
    sc10x <- sc10x,
    sc10x.negative <- sc10x.negative,
    sc10x.positive <- sc10x.positive
  )
  return(results)
}


scQuSAGE <- function(sc10x,gs,save=FALSE,type,id,ds=0,nm="pops",print="tsne"){
  #Runs QuSAGE
  
  #Inputs:
  #sc10x = Seruat object
  #gs = geneset to use for correlation
  #save = save ID
  #type = type of qusage to run (id: create ID's based on run, sm: cor only using small genesets, lg: cor only with large genesets)
  #id = ident to use
  #nm = name of test
  #print = dimentionality reduction to use for display
  
  #Outputs:
  #results[1] = Seurat object
  #results[2] = correlation table
  #results[3] = correlation results
  
  if (!dir.exists(paste0("./analysis/cor/",nm))){
    dir.create(paste0("./analysis/cor/",nm))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/geneset"))){
    dir.create(paste0("./analysis/cor/",nm,"/geneset"))
  }
  if (!dir.exists(paste0("./analysis/cor/",nm,"/cluster"))){
    dir.create(paste0("./analysis/cor/",nm,"/cluster"))
  }
  if (!dir.exists(paste0("./analysis/vis/",nm))){
    dir.create(paste0("./analysis/vis/",nm))
  }
  
  Idents(object=sc10x) <- id
  number.clusters <- length(unique(levels(x=sc10x)))
  
  labels <- paste0("Cluster_",as.vector(Idents(object=sc10x)))
  
  cell.sample <- NULL
  for (i in unique(labels)){
    cell <- WhichCells(sc10x,ident=sub("Cluster_","",i))
    if (length(cell)>ds & ds!=0){
707
      set.seed(71682)
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
      rnd <- sample(1:length(cell),ds)
      cell <- cell[rnd]
    }
    cell.sample <- c(cell.sample,cell)
  }
  data <- as.data.frame(as.matrix(GetAssayData(sc10x[,colnames(sc10x) %in% cell.sample])))
  labels <- labels[colnames(sc10x) %in% cell.sample]
  groups <- sort(unique(labels))
  
  col <- hcl(h=(seq(15,375-375/length(groups),length=length(groups))),c=100,l=65)
  
  #Make labels for QuSAGE
  clust <- list()
  clust.comp <- list()
  for (i in groups){
    t <- labels
    t[t != i] <- "REST"
    clust[i] <- list(i=t)
    rm(t)
    clust.comp[i] <- paste0(i,"-REST")
  }
  
  #Run QuSAGE
  for (i in groups){
    assign(paste0("results.",i),qusage(data,unlist(clust[i]),unlist(clust.comp[i]),gs))
  }
  
  #Generate ID table
  results.cor <- NULL
  results.cor <- qsTable(get(paste0("results.",groups[1])),number=length(gs))
  results.cor$Cluster <- groups[1]
  for (i in groups[-1]){
    qs <- qsTable(get(paste0("results.",i)),number=length(gs))
    qs$Cluster <- i
    results.cor <- rbind(results.cor,qs)
  }
  results.cor <- results.cor[,-3]
  rownames(results.cor) <- NULL
  
  results.clust.id <- NULL
748
749
750
751
  #if (max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
  #  results.clust.id <- results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==groups[1] & results.cor[,3]<=0.05,][,2]),]
  if (max(results.cor[results.cor[,4]==groups[1],][,2],na.rm=TRUE)>=0){
    results.clust.id <- results.cor[results.cor[,4]==groups[1],][which.max(results.cor[results.cor[,4]==groups[1],][,2]),]
752
753
754
755
756
757
758
759
  } else {
    results.clust.id$pathway.name <- "Unknown"
    results.clust.id$log.fold.change <- 0
    results.clust.id$FDR <- 0
    results.clust.id$Cluster <- groups[1]
    results.clust.id <- as.data.frame(results.clust.id)
  }
  for (i in groups[-1]){
760
761
762
763
    #if (max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2],na.rm=TRUE)>=0){
    #  results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][which.max(results.cor[results.cor[,4]==i & results.cor[,3]<=0.05,][,2]),])
    if (max(results.cor[results.cor[,4]==i,][,2],na.rm=TRUE)>=0){
      results.clust.id <- rbind(results.clust.id,results.cor[results.cor[,4]==i,][which.max(results.cor[results.cor[,4]==i,][,2]),])
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    } else {
      results.clust.id <- rbind(results.clust.id,data.frame(pathway.name="Unknown",log.fold.change=0,FDR=0,Cluster=i))
    }}
  rownames(results.clust.id) <- NULL
  
  #Determine axes for correlation plots
  max.x.rg <- 0
  min.x.rg <- 0
  max.y.rg <- 0
  for (i in groups){
    qs <- get(paste0("results.",i))
    if (max(qs$path.mean)>max.x.rg){
      max.x.rg <- max(qs$path.mean)
    }
    if (min(qs$path.mean)<min.x.rg){
      min.x.rg <- min(qs$path.mean)
    }
    if (max(qs$path.PDF)>max.y.rg){
      max.y.rg <- max(qs$path.PDF)
    }}
  if (type=="sm"){
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    #Plot correlation plots by geneset
    for (i in 1:length(gs)){
      postscript(paste0("./analysis/cor/",nm,"/geneset/QuSAGE_",nm,".",names(gs)[i],".eps"))
      for (j in groups){
        qs <- get(paste0("results.",j))
        if (j==groups[1]){
          plotDensityCurves(qs,path.index=i,col=col[match(j,groups)],main=names(gs)[i],xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=i,add=TRUE,col=col[match(j,groups)],lwd=5)
        }}
      legend("topright",col=col,legend=groups,lty=1,lwd=5,cex=2,ncol=1,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    #Plot correlation plots by cluster
    for (i in groups){
      qs <- get(paste0("results.",i))
      postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
      for (j in 1:length(gs)){
        if (j==1){
          plotDensityCurves(qs,path.index=j,col=viridis(length(gs))[j],main=i,xlim=c(min.x.rg-0.05,max.x.rg+0.05),ylim=c(0,50*ceiling(max.y.rg/50)),xlab="Gene Set Activation",lwd=5,cex.main=2.5,cex.axis=1.5,cex.lab=2)
        } else {
          plotDensityCurves(qs,path.index=j,add=TRUE,col=viridis(length(gs))[j],lwd=5)
        }}
      legend("topright",col=viridis(length(gs)),legend=names(gs),lty=1,lwd=5,cex=1,ncol=2,bty="n",pt.cex=2)
      box(lwd=5)
      dev.off()
    }} else {
      for (i in groups){
        qs <- get(paste0("results.",i))
        postscript(paste0("./analysis/cor/",nm,"/cluster/QuSAGE_",nm,"_",i,".eps"))
        plotCIs(qs,path.index=1:numPathways(qs),cex.lab=1.5)
        dev.off()
      }}
  
  if (save==TRUE){
    merge.cluster <- NULL
    for (i in groups){
823
824
825
826
      #if (max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)>=0){
      #  sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[,4]<=0.05,][,2],na.rm=TRUE)][1],"')")))
      if (max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)>=0){
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = '",qsTable(get(paste0("results.",i)),number=length(gs))[qsTable(get(paste0("results.",i)),number=length(gs))[2]==max(qsTable(get(paste0("results.",i)),number=length(gs))[,2],na.rm=TRUE)][1],"')")))
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
      } else {
        sc10x<-eval(parse(text=paste0("RenameIdents(object=sc10x,'",sub("Cluster_","",i),"' = 'Unknown')")))
      }}
    sc10x[[nm]] <- Idents(object=sc10x)
  }
  
  plot1 <- DimPlot(sc10x,reduction="pca",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot2 <- DimPlot(sc10x,reduction="tsne",label=TRUE,repel=TRUE)+theme(legend.position="none")
  plot3 <- DimPlot(sc10x,reduction="umap",label=TRUE,repel=TRUE)+theme(legend.position="none")
  if (print=="tsne"){
    postscript(paste0("./analysis/vis/",nm,"/tSNE_",id,"_",nm,".eps"))
    print(print2)
    dev.off()
  } else if (print=="umap"){
    postscript(paste0("./analysis/vis/",nm,"/UMAP_",id,"_",nm,".eps"))
    print(print3)
    dev.off()
  } else if (print=="2"){
    postscript(paste0("./analysis/vis/",nm,"/2Vis_",id,"_",nm,".eps"))
    grid.arrange(plot2,plot3,ncol=1)
    dev.off()
  } else if (print=="3"){
    postscript(paste0("./analysis/vis/",nm,"/3Vis_",id,"_",nm,".eps"))
    grid.arrange(plot1,plot2,plot3,ncol=1)
    dev.off()
  }
  
  results <- list(
    sc10x=sc10x,
    results.cor=results.cor,
    results.clust.id=results.clust.id
  )
  names(results)=c("sc10x",paste0("results.cor.",nm),paste0("results.clust.",nm,".id"))
  return(results)
}